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Abstract
Identifying versions of the same song by means of automa-
tically extracted audio features is a complex task for a music
information retrieval system, even though it may seem very
simple for a human listener. The design of a system to per-
form this task gives the opportunity to analyze which fea-
tures are relevant for music similarity. This paper focu-
ses on the analysis of tonal similarity and its application
to the identification of different versions of the same piece.
This work formulates the situations where a song is ver-
sioned and several musical aspects are transformed with res-
pect to the canonical version. A quantitative evaluation is
made using tonal descriptors, including chroma representa-
tions and tonality. A simple similarity measure, based on
Dynamic Time Warping over transposed chroma features,
yields around 55% accuracy, which exceeds by far the expec-
ted random baseline rate.

Keywords: version identification, cover versions, tonality,
pitch class profile, chroma, audio description.

1. Introduction
1.1. Tonality and music similarity
The possibility of finding “similar” pieces is one of the most
attractive features that a system dealing with large music
collections can provide. Similarity is a ambiguous term, and
music similarity is surely one of the most complex problems
in the field of MIR. Music similarity may depend on diffe-
rent musical, cultural and personal aspects. Many studies in
the MIR literature try to define and evaluate the concept of
similarity, i.e., when two pieces are similar. There are many
factors involved in this problem, and some of them (maybe
the most relevant ones) are difficult to measure.

Some studies intend to compute similarity between audio
files. Many approaches are based on timbre similarity using
low-level features [1, 2]. Other studies focus on rhythmic
similarity. Foote proposes some similarity measures based
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on the ”beat spectrum”, including Euclidean distance, a co-
sine metric or inner product [3]. Tempo is also used to mea-
sure similarity in [4]. The evaluation of similarity measures
is a hard task, given the difficulty of gathering ground truth
data for a large quantity of material. Some researchers as-
sume that songs from the same style, by the same artist or on
the same album are similar [5, 6, 7]. A direct way to mea-
sure the similarity between songs is also to gather ratings
from users (see [4]), which is a difficult and time-consuming
task.

Tonality has not been much applied to music similarity,
as it might be not so clear for people not having a musical
background. We focus here on analyzing how tonal descrip-
tors can be used to measure similarity between pieces.

We consider that two pieces are tonally similar if they
share a similar tonal structure, related to the evolution of
chords (harmony) and key. We will assume that two pieces
are similar if they share the same tonal contour. For song
similarity, tonal contour could be as relevant as melodic
contour is for melody recognition[8]. We focus then on the
problem of identifying different versions of the same song,
and study the use of tonal descriptors for this task.

1.2. Version identification
When dealing with huge music collections, version identi-
fication is a relevant problem, because it is common to find
more than one version of the a given song. We can identify
different situations for this in mainstream popular music, as
for example re-mastered, recorded live, acoustic, extended
or disco tracks, karaoke versions, covers (played by different
artists) or remixes. One example of the relevance of cover
songs is found in the Second Hand Songs database 1 , which
already contains around 37000 cover songs.

A song can be versioned in different ways, yielding dif-
ferent degree of dissimilarity between the original and the
versioned tune. The musical facets that are modified can be
instrumentation (e.g. leading voice or added drum track),
structure (e.g. new instrumental part, intro or repetition),
key (i.e. transposition) and harmony (e.g. jazz harmoniza-
tion). These modifications usually happen together in ver-
sions from popular music pieces. The degree of disparity on
the different aspects establishes a vague boundary between

1 http://www.secondhandsongs.com



what is considered a version or what is really a different
composition. This frontier is difficult to define, and it is
an attractive topic of research from the perspective of in-
tellectual property rights and plagiarism. The problem has
conceptual links with the problem of analogy in human cog-
nition, which is also an intriguing and far from being under-
stood topic. This is the problem also when developing com-
putational models to automatically identify these versions
with absolute effectiveness.

There is few literature dealing with the problem of iden-
tifying versions of the same piece by analyzing audio. Yang
proposed an algorithm based on spectral features to retrieve
similar music pieces from an audio database [9]. This me-
thod considers that two pieces are similar if they are fully or
partially based on the same score. A feature matrix was ex-
tracted using spectral features and dynamic programming.
Yang evaluated this approach using a database of classical
and modern music, with classical music being the focus of
his study. 30 to 60 second clips of 120 music pieces were
used. He defined five different types of ”similar” music
pairs, with increasing levels of difficulty. The proposed al-
gorithm performed very well (90% accuracy) in situations
where the score is the same and there are some tempo mo-
difications, which is the worst case figure. On the same
idea, Purwins et al. calculate the correlation of constant
Q-profiles for different versions of the same piece played
by different performers and instruments (piano and harpsi-
chord) [10] .

2. Tonal feature extraction
The tonal features used for this study are derived from the
Harmonic Pitch Class Profile (HPCP). The HPCP is a pitch
class distribution (or chroma) feature computed in a frame
basis using only the local maxima of the spectrum within
a certain frequency band. It considers the presence of har-
monic frequencies, as it is normalized to eliminate the in-
fluence of dynamics and instrument timbre (represented by
its spectral envelope). From the instantaneous evolution of
HPCP, we compute the transposed version of this profile
(THPCP), which is obtained by normalizing the HPCP vec-
tor with respect to the global key. The THPCP represents
a tonal profile which is invariant to transposition. For these
two features, we consider both the instantaneous evolution
and the global average. We refer to [11, 12] for further ex-
planation on the procedure for feature extraction.

In order to measure similarity between global features,
we use the correlation coefficient. As an example, the corre-
lation between HPCP average vectors for two distant pieces
is equal to 0.0069. This small value indicates the dissimi-
larity between the profiles, and can be considered as a base-
line. For instantaneous features, we use a Dynamic Time
Warping (DTW) algorithm. Our approach is based in [13].
The DTW algorithm estimates the minimum cost required to
align one piece to the other one by using a similarity matrix.

3. Case study
We analyze here the example of four different versions of
the song Imagine, written by John Lennon. The main differ-
ences between each of the versions and the original song is
summarized in Table 2.

We first analyze how global tonal descriptors are simi-
lar for these different pieces. In order to neglect structural
changes, we first consider only the first phrase of the song,
which is manually detected. For the last version, performed
by two different singers, we select two phrases, each one
sung by one of them, so that there is a total of 6 different au-
dio phrases. HPCP average vectors are shown in Figure 1.
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Figure 1. HPCP average for 6 different versions of the first
phrase of Imagine. 1. John Lennon, 2. Instrumental, guitar
solo, 3. Diana Ross, 4. Tania Maria, 5. Khaled and 6. Noa.

The correlation matrix Rphrase between the average HPCP
vectors for the different versions is equal to:

Rphrase =

















1 0.97 0.82 0.94 0.33 0.48
0.97 1 0.86 0.95 0.31 0.45
0.82 0.86 1 0.75 0.59 0.69
0.94 0.95 0.75 1 0.18 0.32
0.33 0.31 0.59 0.18 1 0.95
0.48 0.45 0.69 0.32 0.95 1

















(1)

Table 1. Classification of tonal features used for similarity.

Feature Pitch-class
representa-
tion

Temporal scope

HPCP Absolute Instantaneous
THPCP Relative Instantaneous
Average HPCP Absolute Global
Average THPCP Relative Global



Table 2. Details on versions of the song Imagine.

ID Artist Modified musical facets Key
1 John

Lennon
Original C Major

2 Instrumental Instrumentation (solo
guitar instead of leading
voice)

C Major

3 Diana Ross Instrumentation, tempo,
key and structure

F Major

4 Tania
Maria

Instrumentation, tempo,
harmonization (jazz) and
structure

C Major

5 Khaled and
Noa

Instrumentation, tempo,
key and structure

Eb Major

We can see that there are some low values of correlation be-
tween versions, mainly for the ones which are transposed to
Eb major (5 and 6), as this tonality is not close to C ma-
jor as F major is (3). THPCP average vectors are shown in
Figure 2.
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Figure 2. THPCP average for 6 different versions of the first
phrase of Imagine. 1. John Lennon, 2. Instrumental, guitar
solo, 3. Diana Ross, 4. Tania Maria, 5. Khaled and 6. Noa.

The correlation matrix Rt,phrase between the THPCP ave-
rage vectors for the different versions is equal to:

Rt,phrase =

















1 0.97 0.97 0.94 0.94 0.97
0.97 1 0.98 0.95 0.91 0.98
0.97 0.98 1 0.92 0.95 0.99
0.94 0.95 0.92 1 0.86 0.94
0.94 0.91 0.95 0.86 1 0.95
0.97 0.98 0.99 0.94 0.95 1

















(2)
This correlation matrix show high values for all the different
versions, with a minimum correlation value of 0.86. When

comparing complete songs in popular music, most of the
versions have a different structure than the original piece,
adding repetitions, new instrumental sections, etc. We look
now at the complete 5 versions of the song Imagine, by John
Lennon, presented in Table 2. The correlation matrix R be-
tween the average HPCP vectors for the different versions is
equal to:

R =













1 0.99 0.83 0.96 0.45
0.99 1 0.86 0.95 0.45
0.83 0.86 1 0.79 0.65
0.96 0.96 0.79 1 0.35
0.45 0.45 0.65 0.35 1













(3)

We observe that the correlation values are lower for the piece
in a distant key, which, in the case of version 5, is Eb major.
We can again normalize the HPCP vector with respect to the
key. THPCP average vectors are shown in Figure 3.
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Figure 3. THPCP average for 5 different versions of Imagine.

The correlation matrix Rt between the average THPCP
vectors for the different versions is equal to:

Rt =













1 0.99 0.98 0.96 0.98
0.99 1 0.99 0.95 0.98
0.98 0.99 1 0.95 0.99
0.96 0.95 0.95 1 0.95
0.98 0.98 0.99 0.95 1













(4)

We observe that the correlation values increase for version
5. In this situation, it becomes necessary to look at the struc-
ture of the piece. When the pieces under study have different
structures, we study the temporal evolution of tonal features,
in order to locate similar sections. Structural description is
a difficult problem, and some studies have been devoted to
this issue (see, for instance [14] and [15]). Foote [16] pro-
posed the use of self-similarity matrices to visualize music.
Similarity matrices were built by comparing Mel-frequency



Figure 4. Similarity matrix between version 5 and the original
version of Imagine.

cepstral coefficients (MFCCs), representing low-level tim-
bre features. We extend this approach to the mentioned low-
level tonal features. Figure 5 (at the top and left side) rep-
resents the self-similarity matrix for the original version of
Imagine, using instantaneous THPCP. The similarity matrix
is obtained using distance between THPCP profiles statistics
over a sliding window.

In this self-similarity matrix we can identify the struc-
ture of the piece by locating side diagonals (verse-verse-
chorus-verse-chorus). We also observe that there is a chord
sequence which is repeating along the verse (C-F), so that
there is a high self-similarity inside each verse. Instead
of computing a self-similarity matrix, we compute now the
similarity matrix between two different pieces. Figure 5
shows the similarity matrix between the original song (1)
and the instrumental version (2).

In this figure, we also identify the same song structure as
before, which is preserved in version 2. We also see that the
tempo is preserved, as the diagonal is located so that the time
index remains the same in x and y axis. Now, we analyze
what happens if the structure is modified. Figure 4 shows
the similarity matrix between the original song and version
5. Here, the original overall tempo is more or less kept, but
we can identity some modifications in the structure of the
piece. With respect to the original song, version 5 intro-
duces a new instrumental section plus an additional chorus
at the end of the piece. Figure 5 represents the similarity ma-
trix for each of the 5 cover versions and the self-similarity
matrix of the original song. We can see that version 4 (Tania
Maria) is the most dissimilar one, so that we can not distin-
guish clearly a diagonal in the similarity matrix. If we listen

to both pieces, we can hear some changes in harmony (jazz),
as well as changes in the main melody. These changes affect
the THPCP features. In this situation, it becomes difficult to
decide if this is a different piece or a version of the same
piece. In Figure 5, we also present the similarity matrix
with a different song, Besame Mucho by Diana Krall, in or-
der to illustrate that it is not possible to find a diagonal for
different pieces if they do not share similar chord progres-
sions. As a conclusion to the example presented here and
to the observation of 90 versions of different pieces, we ad-
vance the hypothesis that the instantaneous tonal similarity
between pieces is represented by diagonals in the similarity
matrix from tonal descriptors. The slope of the diagonal rep-
resents tempo differences between pieces. In order to track
these diagonals, we use a simple Dynamic Time Warping,
found in [13]. This algorithm estimates the minimum cost
from one piece to the other one using the similarity matrix.
We study in next section how this minimum cost can be used
to measure similarity between pieces.

4. Evaluation
4.1. Methodology
In this evaluation experiment, we compare the accuracy of
four different similarity measures:

1. Correlation of global HPCP, computed as the average
of HPCP over the whole musical piece.

2. Correlation of global THPCP, computed by shifting
the global HPCP vector with respect to the key of the
piece, obtained automatically as explained in [11].

3. Minimum cost computed using DTW and a similarity
matrix from HPCP values.

4. Minimum cost computed using DTW and a similarity
matrix from THPCP values.

The estimation accuracy is measured using average pre-
cision and recall for all songs in the database. For each one,
the query is removed from the database, i.e. it does not ap-
pear in the result list. In order to establish a baseline, we
compute the precision that would be obtained by randomly
selecting pieces from the music collection. Let’s consider
that, given a query i from the collection (i = 1 . . . N ), we
randomly chose a given piece j 6= i (j = 1 . . . N ) from the
evaluation collection as most similar to a query. The proba-
bility of choosing a piece with the same version Id is equal
then to:

RandomPrecisioni =
nId(i) − 1

N − 1
(5)

The average for all the possible queries is equal to:

RandomPrecision =
1

N
·

N
∑

i=1

RandomPrecisioni (6)



Figure 5. Similarity matrix for 5 different versions of Imagine.

For the considered evaluation collection, the baseline would
be RandomPrecision = 3.196%, with a maximum value
of the F measure equal to 0.0619. This is a very low value
that our proposed approach should improve.

4.2. Material
The material used in this evaluation are 90 versions from
30 different songs taken from a music collection of popular
music. The versions include different levels of similarity to
the original piece, which are found in popular music: noise,
modifications of tempo, instrumentation, transpositions and
modifications of main melody and harmonization. The av-
erage number of versions for each song is equal to 3.07, and
its variance is 2.71. Most of the versions include modifica-
tions in tempo, instrumentation, key and structure, and some
of them include variations in harmonization 2 . We are then
dealing with the most difficult examples, so that the evalua-
tion can be representative of a real situation when organizing
digital music collections.

4.3. Results
Figure 6 shows the average precision and recall for all the
evaluated collection for the different configurations. When
using the correlation of global average HPCP as a similarity

2 The list of songs in the music collection and some additional material
to this work is presented in http://www.iua.upf.edu/~egomez/versionid

measure between pieces, the obtained precision is very low,
20% with a recall level of 8% and a F measure of 0.145.
When using global features normalized with respect to the
key (THPCP), the precision increases to 35.56%, around
15% higher than using HPCP. The recall level also increases
from 8% to 17.6%, and the F measure to 0.322. Using ins-
tantaneous HPCP and DTW minimum cost, the precision is
equal to 23.35%, which is higher than using a global mea-
sure of HPCP. The recall level is slightly higher, equal to
10.37% and the F value is equal to 0.159. Finally, if we use
DTW minimum cost computed from instantaneous THPCP
as similarity measure, we observe that the maximum pre-
cision increases up to 54.5%, and the recall level is equal
to 30.8%, obtaining a F measure of 0.393. This evalua-
tion shows that relative descriptors (THPCP) seem to per-
form better than absolute chroma features, which is coher-
ent with the invariability of melodic and harmonic percep-
tion to transposition. Also, it seems that it is important to
consider the temporal evolution of tonality, which is some-
times neglected. The best accuracy is then obtained when
using a simple DTW minimum cost computed from THPCP
descriptors, and it is around 55% precision (recall level of
30%, F measure equal to 0.393).
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Figure 6. Precision vs recall values for the different configura-
tions.

5. Conclusions and future work
We have focused in this paper on the analysis of tonal simi-
larity and its application to the identification of different ver-
sions of the same piece. We have presented a small experi-
ment showing that tonal descriptors by itself can be helpful
for this task.

There are some conclusions to this study. First, it is ne-
cessary to consider invariance to transposition when com-
puting tonal descriptors for similarity tasks. Second, we
should look at the structure of the piece to yield relevant
results. Looking at the tonal structure of the piece yields
very good results that may probably exceed those attainable
using other types of descriptors (i.e. timbre or rhythm).

Version identification is a difficult problem requiring a
multifaceted and multilevel description. As we mentioned
before, our evaluation database represents a real situation
of a database including cover versions, where even the har-
mony and the main melody is modified. This fact affects the
pitch class distribution descriptors. Even in this situation,
we see that only using low-level tonal descriptors and a very
simple similarity measure, we can detect until 55% of the
versions with a recall level of 30% (F measure of 0.393).
These results overcome the baseline (F measure of 0.0619)
and show that tonal descriptors are relevant for music simi-
larity.

Further experiments will be devoted to include higher
level structural analysis (determining the most representa-
tive segments), to improve the similarity measure, and to
include other relevant aspects as rhythmic description (ex-
tracting characteristics rhythmic patterns) and predominant
melody estimation.
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