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Abstract 
Classification of musical genres gives a useful measure of 
similarity and is often the most useful descriptor of a 
musical piece.  Previous techniques to use hidden Markov 
models (HMMs) for automatic genre classification have 
used a single HMM to model an entire song or genre.  This 
paper provides a framework to give finer segmentation of 
HMMs through acoustic segment modeling.  Modeling 
each of these acoustic segments with an HMM builds a 
timbral dictionary in the same fashion that one would 
create a phonetic dictionary for speech.  A symbolic 
transcription is created by finding the most likely sequence 
of symbols.  These transcriptions then serve as inputs into 
an efficient text classifier utilized to provide a solution to 
the genre classification problem.  This paper demonstrates 
that language-ignorant approaches provide results that are 
consistent with the current state-of-the-art for the genre 
classification problem.  However, the finer segmentation 
potentially allows for “musical language”-based syntactic 
rules to enhance performance. 

Keywords: musical genres, acoustic segment models, 
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1. Introduction 
With the advent of MP3 and other audio coding schemes, 
music content analysis has become a growing research 
area.  Genre provides a very useful description of a musical 
piece.  However, a lack of label consistency exists in the 
music community [1].  This leads to difficulties in 
comparing the performance of genre classification 
algorithms across databases. 

Music genre classification is composed of two basic 
steps: feature extraction and classification.  In the first 
stage, various features are extracted from the waveform.  In 
the second stage, a classifier is built using the features 
extracted from the training data.  Li and Sleep [2] vector 
quantized Mel-frequency cepstral coefficients (MFCC), 
and then used the codebook assignments for each frame as 

a textual representation of the song.  A Lempel-Ziv-type 
coding algorithm was then utilized to build a modified 
support vector machine (SVM).  In [3], spectral features 
are extracted and classification is performed using a binary 
classification tree with each node containing a linear 
discriminant function (LDF) or single Gaussian classifier.  
Meng and Shawe-Taylor [4] integrated MFCCs into an 
autoregressive model to build long-term features, which 
were placed into a linear neural network and a SVM 
classifier. 

It has been suggested that music genre classification 
parallels the spoken language identification problem [5].  
Just as language governs the syntax of phonemes and 
words, a musical genre’s theoretical structure governs the 
syntactic order of sounds.  For example, the basic 12-bar 
blues form specifies an ordering of I, IV, and V chords.  In 
other words, music genre imposes syntactic constraints that 
influence transition probabilities between fundamental 
acoustic units (notes and chords), which is similar to how 
language imposes probabilistic constraints on phone and 
word transitions.  In addition, these fundamental units vary 
in both observational feature values and in duration.  In 
speech, variable-length acoustic units are modeled using 
hidden Markov models (HMMs) [6].   The variable-length 
segments is the key difference between this proposed 
approach and the one found in [2].  In addition, these 
variable-length segments are treated as fundamental 
acoustic units in this study, upon which higher-cognitive 
type approaches may be built to improve results.  There 
have been attempts to incorporate HMMs into the design of 
genre classifiers.  Scaringella and Zoia [7] modeled each 
genre by a single 4-state HMM, with each state 
characterized by a Gaussian mixture model (GMM) with 3 
mixture components.  Aucouturier and Pachet [8]  use a 
single HMM for each song in the training database and 
associate each test song to the genre model that scores 
highest.  The equivalence to speech would be to model 
speech at the language (genre) or utterance (song) level.  
Almost all speech HMMs model much smaller units, e.g. 
phonemes and words, which parallel musical notes and 
chords. 

A problem in modeling at the note level in music lies in 
the fact that there are no transcribed databases for music 
and automatic transcription is not yet a solved problem.  
Many difficulties exist in creating these corpora, including 
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time, money, and copyright regulations.  Even should 
transcribed corpora exist one day, many additional 
problems need to be addressed.  For instance, music is not 
monophonic, but is often composed of multiple instruments 
playing many notes simultaneously.  In order to have a 
single HMM for each note, source separation would have 
to become a realizable possibility.  If HMMs are 
constructed for observations of multiple notes being played 
at once, studies need to be conducted to determine whether 
the number of states in a note is instrument dependent, if 
different HMMs need to be constructed for every possible 
note in a chord or whether key notes such as the root note 
could serve as an anchor note in identifying the HMM to 
use for the chord, etc. 

This paper argues that a smaller representation based on 
acoustic segment models (ASMs) [9] is a possible solution 
until transcribed databases become a realistic alternative.  
In fact, much of this paper is based on a language 
identification approach by Ma, et al. [10].  A textual 
transcription of each song is created by finding the most 
probable sequence of ASMs.  Therefore, each song can 
serve as the musical equivalent of a document that is 
composed of a vocabulary of symbolic units.  These 
transcriptions allow for more robust text retrieval 
algorithms, which this paper accomplishes through latent 
semantic indexing (LSI).  This algorithm transforms word 
counts into multidimensional vectors, which are then used 
to build the final classifiers.  The SVM [11] was used for 
this study.  This approach provides an initial foundation for 
future improvements through the use of syntax and 
“musical language”-based rules. 

The rest of this paper is organized in accordance with 
the flow of the algorithm.  In Section 2, ASMs are 
discussed for a musical framework.  A musical text-based 
SVM classifier design is discussed in Section 3.  The 
results, including an analysis across new standard 
databases is given in Section 4.  Finally, our conclusions 
are given in Section 5. 

2. Universal Acoustic Models 
Universal acoustic models are based on the idea that an 
acoustic utterance can be described by a sequence of 
smaller units, e.g. phones build up to words and sentences.  
Real signal observations can be considered as noisy 
representations of these basic units.  The models 
corresponding to these units form a standard set capable of 
representing every possible combination of sounds.  If a 
labeled training corpus exists, it can be used to train 
HMMs, as is done in speech.  However, no such corpus 
exists for music.  Therefore, an unsupervised approach is 
utilized. 

Assuming that the features extracted from the audio 
signal accurately describe the various sounds encountered, 
one would expect that the real, noisy observations of the 
same fundamental unit to be close by some metric and 

observations of different units to be far apart.  Therefore, 
the basic units can be found by vector quantizing (VQ) 
[12] the acoustic space.  The resulting clusters are then 
represented with symbols that serve as entries in an 
acoustic codebook.  Each song is then represented as a 
sequence of symbolic observations based on distance 
measures between song segments and codebook entries.  
This idea of breaking an acoustic utterance into segments 
and assigning each segment to an entry of a global acoustic 
codebook is known as tokenization [9]. 

2.1 Initial Segmentation and transcription 
As described in [6], training HMMs requires labeled 
training data, but since no such data exists for music 
currently, the ASM approach is used to build initial 
transcripts.  The individual ASMs are a global set that is 
found by finding clusters of observations in the training 
data.  Because the HMM training process is an iterative 
process, only a rough initial transcription is needed.  
Potentially, a better segmentation scheme based on musical 
analysis and theory can provide better results.  However, 
the focus of this paper is to demonstrate that the ASM 
approach to segmentation provides results consistent with 
current solutions.  More advanced domain specific-
knowledge principles will be investigated in later research. 

To find an initial set of ASMs and transcripts, each 
audio file is first divided into 25 ms, non-overlapping 
frames that are weighted by a Hamming window.  The 
windows are chosen to be non-overlapping to decrease 
computation time as this is the most time consuming step in 
the algorithm.  Because later HMM training stages will 
redefine better boundary locations, it was felt that 
sacrificing a finer segmentation at this stage for speed was 
a fair tradeoff.  For each audio frame, 8 MFCCs are 
extracted.  This number was chosen empirically to balance 
between segments that were too short, e.g. every individual 
frame being labeled as a segment, and segments that were 
too long, e.g. multiple notes being grouped to form a 
segment.  Intuitively, this makes sense because these low-
order MFCCs describe the slowly changing spectral shape 
[4].  For each song, cepstral mean subtraction [13] and 
variance normalization [14] have been applied, such that 
the mean and variance of each coefficient are zero and one, 
respectively.  Successive frames are then grouped into 
clusters such that they minimize the following distortion 
function 

( ) ( )� �
= += −

=
Q

q

b

bt
qt

q

q

odQOD
1 11

,, µ   (1) 

where O = (o1, o2, …, oT) are the observation vectors, �q is 
the centroid of the q-th segment which ends at bq (b0=0), 
and d(ot, �q) is a distortion metric between ot and �q.  This 
paper uses a simple Euclidean distance metric.  The 
distortion is taken across the Q segments for each song.  



The segmentation that minimizes this distortion function 
can be found using the dynamic time-warping procedure 
described in [15].  An example of segmented audio for two 
notes from a song in the RWC Classical Music Database 
[16] is given in Figure 1. 

 
Figure 1.  Example of segmentation algorithm output. 

The segmentation is very efficient in not only describing 
the starting and endpoints of the audio, but also is able to 
describe the rough locations of the transitional parts, such 
as the attack, sustain, and release. 

Every segment is then summarized by the means of the 
frames that compose the segment.  The means from each 
segment in every training file is used to build a global VQ 
codebook.  A transcript for each training file is then built 
by identifying the closest codebook entry for each segment. 
An example of how these transcripts might look is given in 
Figure 2. 
 

 

x123 
x54 
x32 
x3 
… 

x54 
x78 
x93 
x13 
… 

Song 1 Song 2 

… 

 
Figure 2.  Initial segment model transcripts. 

Each line in a file represents a symbolic codebook entry.  
For example, “x123” is the first “word” in Song 1, “x54” is 
the second, etc.  In this way, each song is sequence of 
symbols in the same way that a text document or speech 
transcription is a sequence of words. 

2.2 ASM/HMM Training 
The transcripts obtained in the previous step provide a 
starting point for an iterative HMM training process.  
While the first 8 MFCCs accomplish the task of finding the 
initial segmentation, it has been found that using higher-
order coefficients, energy, and their derivatives and 
accelerations yield better results for audio and speech 
content.  With this idea in mind, each training and testing 

audio file is divided using a sliding window of 25 ms taken 
every 10 ms.  Each frame is weighted by a Hamming 
window to limit edge effects.  For each frame, the first 12 
MFCCs energy, derivatives, and acceleration coefficients 
are found to build a 39-dimension feature vector for each 
frame.  Again, cepstral mean subtraction and variance 
normalization is applied to both the training and testing 
data.  The training data and associated initial transcripts are 
used to train a set of HMMs (equal to the number of 
ASMs), with each HMM having 3 states.  This number was 
chosen based on current trends in speech research, but may 
not be the most ideal choice.  More experimentation will be 
necessary to determine an appropriate number and whether 
this number is dependent on instruments, style of play, etc.  
Each state is characterized by a Gaussian mixture model, 
with the number of mixtures found by increasing the 
number until no noticeable improvement is found in the 
performance.  For this study, a total of 16 mixtures per 
state was adequate.  For a detailed description of the HMM 
training process the reader is referred to [6].  After training 
the HMMs, they are used to re-estimate the transcription of 
the training files.  These transcripts will be different from 
the original transcripts and are used to further train the 
HMMs.  This process is repeated until only a small amount 
of improvement is noticed with the training data. 

3. Text-Based Classification 
The ASM transcription process creates a string of HMM 
symbols for each training song.  These final transcripts can 
be thought of as a timbral score (as in a “score of music”).  
This symbolic format allows for the use of proven text 
classification techniques commonly used in the information 
retrieval community. 

3.1 Acoustic Language 
As stated in Section 1, music is structured in its creation, 

with deviations being used to incite senses of novelty and 
to prevent boredom.  The ASMs produced in Section 2 can 
be viewed as terms or even as an alphabet of an acoustic 
language.  Their co-occurrences could be seen as syntax, 
even if on a rough level.  While the authors want to caution 
against the belief that the brain processes music and 
language in the same fashion, there does seem to be some 
similarity.  This can be seen with music theory, which 
dictates syntactical usage.  One common phenomena in 
language processing is Zipf’s Law [17], which says if one 
ranks the terms in order of their frequency, f, in a large 
corpus of any language, then the relationship between f and 
the rank, r, will be 
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A surprising result was found when this applied to the 
Magnatune1 database.  While the unigrams (appearance of 
a single symbol) did not show this result, the bigrams 
(appearance of two symbols in specific order) did, as 
demonstrated in Figure 3. 
 

 
Figure 3.  Bigram frequency versus rank for the songs in the 

Magnatunes training set. 
The authors suggest that a possible reason that bigrams 
exhibit this behavior and why unigrams do not is that 
music’s information is not carried in the individual tones, 
but in the difference between pairs of tones.  That is, it is 
not the individual sounds which are the basic building 
blocks, but the pairs of tones which develop the concept of 
melody.    For instance, transposing a melody to another 
key changes the note names and individual sound, but the 
sense of melody remains the same.  

3.2 Latent Semantic Indexing 
One such approach that has proven successful is latent 
semantic indexing (LSI) [18], which represents a training 
corpus by a term-document matrix with the rows 
corresponding to the individual terms and the columns 
representing the documents.  In addition to the unigram 
counts, bigram counts can also be considered for each 
document.  Therefore, if there are J=128 terms, then each 
column (in this case, song) is a vector of size M = 
J+J*J=16512, with J unigrams, which are the ASMs 
described in Section 2, and J*J bigrams.  Specifically, each 
element in the matrix, W, is given by 
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where ci,j is the number of times that word i appears in 
document j and nj is the number of words in document j.  
The term �i is the normalized entropy of word i and is given 
by 
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where ti is the total number of times that word i appears in 
the training documents and T is the number of training 
documents.  The word entropy gives a measure of the 
indexing power.  Specifically, values close to zero indicate 
that the word has more indexing power than words with 
values close to one because the former appears in fewer 
documents.  Typical examples of maximal indexing words 
are proper names, while values very close to one are often 
in function words (e.g. “the” and “a”). 

Even for large databases, many bigrams will never 
appear in the training data.  Leaving these values as zero 
can lead to undesirable results.  Therefore, they are often 
assigned a very small constant or smoothed by some other 
methods.  In general, one implements feature reduction 
through singular value decomposition [18], however, 
because current music research databases do not contain a 
large number of songs, this was seen as unnecessary for 
this study. 

3.3 Evaluation Measures 
Three measures of performance are often used: precision, 
recall, and accuracy.   Precision and recall are useful 
measures for comparing individual genres because they are 
independent to the number of examples that may exist in 
each genre.  The formulas for these two performance 
measures are 
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where tp, fp, fn, and Nt are the true positives, false 
positives, false negatives, and total number of test queries, 
respectively. 

3.4 Support Vector Machines 
Support vector machines (SVM) [11] have proven to be 
effective in a variety of classification problems.  The idea 
behind SVMs is to project data onto a higher dimensional 
space in order to separate classes with a LDF, which 
maximizes the margin between competing classes.  The 
software package SVMlight [19] was used for training and 
classification. 

The inputs into the SVMs are the LSI vectors created in 
the previous step (one vector per song).  The output of this 
classifier is a score, with a positive value indicating one 
class and a negative value indicating the other class.  
However, the song genre problem is multi-category 
problem where each song is assigned to the most likely 



genre.  In order to incorporate SVM into a multi-category 
problem, the “one-against-one” voting scheme [20] was 
employed.   

4. Experimental Results 

4.1 Dataset 
For this study, the training and testing files were obtained 
from Magnatunes, which was used for the 2004 ISMIR 
Contest.  However, HMMs require a lot of data during 
training; therefore, the RWC [16] and Dortmund [21] 
databases were added to train the global HMMs.  However, 
different people will label the same song differently.  To 
prevent such labeling inaccuracies from influencing the 
results, only the final transcripts arising from Magnatunes 
files were utilized in the creation of the term-document 
matrix.  To create this matrix, each training song was 
divided into 30-second, non-overlapping segments, and 
these segments served as the documents with their 
symbolic unigram and bigram counts serving as the terms.  
The test songs were divided in a similar fashion to create 
the test queries.  The authors realize that ideally, each song 
in its entirety would be represented by a single document.  
However, with the size of current research databases, some 
genres are underrepresented.  In addition, diversity in 
artists is also needed to adequately describe a genre.  
Therefore, the files were divided because of the large data 
demands of SVM classifiers.  An artist filter [22] was used 
so that songs from a single artist were used for either 
training or testing, but not both.  The breakdown is 
demonstrated in Table 1 and is given in full detail on the 
first author’s website2  For each genre, the number of 
individual songs and the total number of 30-second 
segments for each genre is illustrated. 

Table 1.  Training and testing databases used for each genre. 

 Training Testing 
Genre Full Segment Full Segment 

Classical 109 580 30 287 
Electronic 115 580 30 316 

Rock 92 560 30 223 
Jazz/Blues 53 430 21 180 

Ambient 50 571 28 297 

4.2 Behavior of ASM Training 
As stated in Section 2, the training of HMMs is an iterative 
process of finding the ASMs and then creating new 
transcripts.  To view how the testing data responds to this 
process, the results for the first four iteration rates are 
shown in Table 2 using 128 ASMs. 

Table 2.  Accuracy versus iteration number. 

Iteration 1 2 3 4 
Acc (%) 67.87 69.32 72.14 72.86 

                                                           
2 http://users.ece.gatech.edu/~jreed/ 

The accuracy rates increase each time a new set of 
transcripts for the training data are created and the HMMs 
are retrained with the new transcripts.  There does appear 
to an asymptotic value close to 73%.  This is consistent 
with previous solutions to this problem and is often cited as 
the “glass ceiling” of performance which cannot be 
surpassed without taking higher level cognitive processing 
into account [8]. 

To get an accurate view of the SVM training process, 
the number of support vectors (SV) for the 128-ASM 
classifiers are listed in Table 3. 
Table 3.  Number of support vectors for the 128 ASM classifiers. 

Classifier type Num. SV 
Classical versus Electronica 488 

Classical versus Rock 478 
Classical versus Jazz 550 

Classical versus Ambient 677 
Electronica versus Rock 672 
Electronica versus Jazz 558 

Electronica versus Ambient 716 
Rock verus Jazz 561 

Rock versus Ambient 574 
Jazz versus Ambient 641 

4.3 Genre Confusion 
The final confusion matrix is displayed in Table 4 for the 
SVM maximum vote classifier, where the rows represent 
the ground truth as labeled in the metadata from 
Magnatunes and the columns represent how the algorithm 
classified the test songs.  Recall and precision rates are 
shown as defined in Section 3.3 as well. 

Table 4.  Final confusion matrix for SVM classifier with C = 
classical, E = electronic, R = rock, J/B = jazz and blues, and A = 

ambient 

Genre C E R J/B A Rec 
C 26 0 1 1 2 86.7 
E 0 19 9 0 2 63.3 
R 0 5 24 0 1 80.0 

J/B 1 2 5 12 1 57.1 
A 1 4 2 1 21 72.4 

Prec 92.9 63.3 58.5 85.7 77.8  
Most errors occur in just one other class and can be 

explained by the fact that many songs are not necessarily 
“strictly jazz”, “strictly electronic”, etc.  For instance, some 
of the files in the Magnatunes corpus are described as 
“electronic rock with a pop edge.”  This may indicate that 
many of the proposed genre classification schemes need to 
be extended to allow for multi-topic categorization.  
Additionally, heuristic clues based on perception and 
cognition may help in discrimination. 

4.4 ASM Size Performance 
An important variable is the number of ASMs that are used 
as unigram terms.  If the number of ASMs is too small, 



then there will not be enough acoustic coverage.  However, 
too many ASMs will lead to a large dimensionality and 
requires more training data and computation time.  
Accuracies, as defined in Section 3.3, using 64 and 128 
ASMs after 2 iterations are shown in Table 5. 

Table 5.  Genre accuracies vs. number of ASMs 

64 ASM 128 ASM 
55.41% 69.32% 

A significant increase in performance (13.91%) can be 
seen as the number of ASMs increases from 64 to 128.   

5. Conclusion 
The algorithm we have presented provides comparable 
results to past solutions of the genre classification problem.  
However, efficient segmentation of HMM modeling is 
provided with this approach.  Previous use of HMMs for 
this problem modeled an entire song or genre with a single 
HMM.  If genre classification is comparable to language 
recognition, then modeling HMMs in this way would 
equate to having a single HMM for an entire spoken 
document or entire language.  Most speech applications use 
HMMs on the phonetic level and are therefore able to use 
syntactic rules to improve classification performance.  This 
study demonstrates that a similar approach may be possible 
for music, even though labeled training corpora are not in 
existence. 

Using the acoustic segment model idea on music allows 
for a “timbre dictionary” to be created, which is then used 
to train HMMs that represent the entire acoustic space.  
The resulting transcriptions allow for a conversion into a 
textual transcript so that efficient text retrieval algorithms 
can then be utilized. 
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