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Abstract
This paper proposes a conceptually simple and computa-
tionally efficient fundamental frequency (F0) estimator for
polyphonic music signals. The studied class of estimators
calculate the salience, or strength, of a F0 candidate as a
weighted sum of the amplitudes of its harmonic partials. A
mapping from the Fourier spectrum to a “F0 salience spec-
trum” is found by optimization using generated training ma-
terial. Based on the resulting function, three different esti-
mators are proposed: a “direct” method, an iterative estima-
tion and cancellation method, and a method that estimates
multiple F0s jointly. The latter two performed as well as a
considerably more complex reference method. The number
of concurrent sounds is estimated along with their F0s.

Keywords: F0 estimation, pitch, music transcription.

1. Introduction
Pitch information is an essential part of almost all Western
music, but extracting the pitch content automatically from
recorded audio signals is difficult. Whereas the spectrogram
of a music signal can be calculated straightforwardly using
the short-time Fourier transform, computing a “piano roll”-
representation which shows polyphonic pitch content as a
function of time is non-trivial, and systems trying to do this
tend to be very complex.

F0 estimation in polyphonic music has been addressed
by many authors. Kashino extracted sinusoid tracks from a
music signal and grouped them to sound sources based on
acoustic features and musical information [1]. De Cheveigné
[2], Tolonen and Karjalainen [3], and Klapuri [5] proposed
methods based on modeling the human auditory system. Goto
[6] and Davy and Godsill [7] employed a parametric signal
model and statistical methods. Smaragdis [8] and Abdallah
[9], proposed unsupervised learning techniques to resolve
sound mixtures, and Poliner and Ellis [10] introduced a clas-
sification approach to the problem.

Here we study a certain type of F0 estimators, where an
input signal is first spectrally flattened (“whitened”) in order
to suppress timbral information, and then the salience, or
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strength, of a F0 candidate is calculated as a weighted sum
of the amplitudes of its harmonic partials. More exactly, the
salience s(τ) of a period candidate τ is calculated as

s(τ) =

M
∑

m=1

g(τ,m)|Y (fτ,m)|, (1)

where fτ,m = mfs/τ is the frequency of the m:th harmonic
partial of a F0 candidate fs/τ , fs is the sampling rate, and
function g(τ,m) defines the weight of partial m of period
τ in the sum. Y (f) is the short-time Fourier transform of
the whitened time-domain signal. 1 The spectral whitening
is a straightforward pre-processing operation explained in
Sect. 2.1. For convenience, we write s(τ) as a function of
the fundamental period τ instead of the F0 (= fs/τ ).

The basic idea of (1) is intuitively appealing since pitch
perception is closely related to the time-domain periodicity
of sounds, and the Fourier theorem states that a periodic sig-
nal can be represented with spectral components at integer
multiples of the inverse of the period. Indeed, formulas and
principles resembling (1) have been used for F0 estimation
by a number of authors, under different names and in dif-
ferent variants. Already in 1960s and 70s, Schroeder intro-
duced the frequency histogram and Noll the harmonic sum
spectrum (see [11, p.414]). De Cheveigné [2] discusses har-
monic selection methods and, more recently, Walmsley [12]
uses the name harmonic transform for a similar technique.

The question of an optimal mapping of the Fourier spec-
trum to a “F0 salience spectrum” is closely related to these
methods. Here, the function g(τ,m) is learned by a brute-
force optimization using a large amount of training material.
Based on this, a parametric form is proposed for g(τ,m).

In this paper, three different methods based on (1) are
proposed. The first and simplest is a “direct” method based
on evaluating s(τ) for a range of values of τ and picking the
desired number of highest local maxima in it. The second
method represents an iterative estimation and cancellation
approach, where the maximum of s(τ) is used to estimate
one F0 which is then cancelled from the mixture before es-
timating the next one. The third method estimates all F0s
jointly. For the latter two methods, a technique is proposed
for estimating the number of sounds in the mixture. The
iterative method admits a very fast implementation which

1 Defining s(τ) in terms of the power spectrum instead of the magnitude
spectrum would have certain analytical advantages, but this led to clearly
inferior F0 estimation results despite of extensive investigation.
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Figure 1. Responses Hb(k) applied in spectral whitening.

does not require evaluating s(τ) for all period candidates τ .
The three methods are evaluated using mixtures of musical
instrument sounds, and the results are compared with three
reference methods [3], [4] and [5].

2. Proposed methods
This section describes the proposed methods in detail.

2.1. Spectral whitening
One of the big challenges in F0 estimation is to make sys-
tems robust for different sound sources. A way to achieve
this is to try to suppress timbral information prior to the ac-
tual F0 estimation. This can be done by estimating the rough
spectral energy distribution (which largely defines the tim-
bre of a sound) and then flattening it entirely or partly by
inverse filtering. This process is called spectral whitening
and there are several ways of doing it (see e.g. [3]). Here
a frequency-domain technique is employed which is easy to
implement and leads to good results in practice.

First, the discrete Fourier transform X(k) of the input
signal x(n) is calculated in an analysis frame that is Hanning-
windowed and zero-padded to twice its length before the
transform. Then a bandpass filterbank is simulated in the
frequency domain. Center frequencies cb [Hz] of the sub-
bands are distributed uniformly on the critical-band scale,
cb = 229 × (10(b+1)/21.4 − 1), and each subband b =
1, . . . , 30 has a triangular power response Hb(k) that ex-
tends from cb−1 to cb+1 and is zero elsewhere (see Fig. 1).

Standard deviations σb within the subbands b are calcu-
lated by applying the responses Hb(k) in the frequency do-
main:

σb =

(

1

K

∑

k

Hb(k)|X(k)|2

)1/2

, (2)

where K is the length of the Fourier transform. Next, band-
wise compression coefficients γb = σν−1

b are calculated,
where ν = 0.33 is a parameter determining the amount of
spectral whitening applied. The coeffients γb are linearly in-
terpolated between the center frequencies cb to obtain com-
pression coefficients γ(k) for all frequency bins k.

Finally, a whitened spectrum Y (k) is obtained by weight-
ing the spectrum of the input signal by the compression co-
efficents, Y (k) = γ(k)X(k).

2.2. Calculation of the salience function in practice
Calculation of s(τ) using (1) directly requires evaluating
Y (f) for arbitrary frequencies f which is computationally

inefficient. Use of the fast Fourier transform becomes pos-
sible by replacing Y (f) in (1) by its discrete version Y (k)
and by approximating s(τ) by

ŝ(τ) =

M
∑

m=1

g(τ,m) max
k∈κτ,m

|Y (k)|, (3)

where the set κτ,m defines a range of frequency bins in the
vicinity of the m:th overtone partial of the F0 candidate
fs/τ . More exactly,

κτ,m = [〈mK/(τ +∆τ/2)〉, . . . , 〈mK/(τ−∆τ/2)〉], (4)

where 〈·〉 denotes rounding to the nearest integer. It is clear
that ŝ(τ) ≈ s(τ) when ∆τ → 0. In practice, however, it is
useful to set ∆τ according to the spacing between succes-
sive period candidates τ in order to ensure that all spectral
components k belong to the range κτ,m of at least one pe-
riod candidate τ when m is fixed. Here we use the value
∆τ = 0.5, that is, the spacing between fundamental period
candidates τ is half the sampling interval. 2

2.3. Optimization of the weight function
A remaining task is to optimize the function g(τ,m) so as to
minimize the F0 estimation error rate of the system. For this
purpose, we generated training material consisting of ran-
dom mixtures of musical instrument sounds with their ref-
erence F0 data. The database from which the samples were
drawn is described in more detail in Sect. 3. The mixtures
were generated by first allotting an instrument and then a
random sound from its playing range, limiting F0s between
40 Hz and 2100 Hz. This two-stage randomizing was re-
peated until the desired number of sounds was obtained, and
the sounds were then mixed with equal mean-square levels.
One thousand mixtures of one, two, four, and six sounds
were generated, totalling 4000 training instances.

F0 estimation was performed simply by picking P high-
est local maxima in the function ŝ(τ). The number of F0s
in each mixture, P , was given to the estimator along with a
93 ms analysis frame. Multiple-F0 estimation error rate is
defined as the proportion of reference F0s that were not cor-
rectly found. In predominant-F0 estimation, the task is to
find only one F0 in each mixture. In this case, the maximum
of ŝ(τ) was taken and judged correct if it matched any of
the reference F0s in the mixture. A correct F0 estimate was
defined to deviate less than 3% from the reference. The cri-
terion to be minimized in the optimization was the average
of multiple-F0 and predominant-F0 estimation error rates in
different polyphonies.

Two different factorized forms of g(τ,m) were studied:

g(τ,m) = g1(τ)g2(m), (5)

g(τ,m) = g1(τ)g3(fτ,m). (6)

2 In Sect. 2.4 where the fast algorithm is presented, the sampling of τ
has only minor effect on computational efficiency, and therefore very dense
sampling can be implemented. In practice, ∆τ = 0.5 suffices.



Reducing the two-parameter function g(τ,m) to a product
of two marginal functions makes the optimization task eas-
ier and is likely to lead to a result that generalizes better to
previously unseen test cases.

Let us first consider the form given by (5). The function
g1(τ) was parametrized by interpolating between ten “an-
chor points” which were distributed roughly as a geomet-
ric series between the fundamental frequencies 30 Hz and
2500 Hz. Similarly, the function g2(m) was parametrized
by distributing ten anchor points as a geometric series be-
tween the 1st and 21st harmonic, and the function g2(m)
was then linearly interpolated between these. The optimiza-
tion was done by initializing the amplitudes of the anchor
points to unity values and then updating them cyclically, one
at the time, so as to minimize the F0 estimation error rate.

Figure 2 shows the learned functions g1(τ) and g2(m),
together with the resulting F0 estimation error rates (for the
training data). The found shape of g1(τ) is more or less a
linear function of F0 (that is, fs/τ ), whereas g2(m) con-
verged roughly to the 1/m shape, however with smaller
weights for the lowest even-numbered harmonics (see Fig. 2).
The predominant-F0 estimation accuracy is good, but multi-
ple-F0 estimation leaves room for improvement.

Optimization for the factorization in (6) was done in a
similar manner. The function g3(fτ,m) was parametrized by
interpolating it linearly between 13 anchor points that were
distributed roughly as a geometric series between 30 Hz and
7 kHz. The optimization was again carried out by updating
the amplitudes of the anchor points cyclically, one at a time,
so as to minimize the F0 estimation error rate. The best
result was obtained by starting the optimization from con-
figuration g(τ,m) = 1/m, which is obtained by initializing
the anchor points as g1(τ) = fs/τ and g3(fτ,m) = 1/fτ,m.

Figure 3 shows the learned functions g1(τ) and g3(fτ,m),
and the resulting F0 estimation error rates. As can be seen,
the functions g1(τ) and g3(fτ,m) do not drift very far from
their initial shape, and the error rates are about the same as
those achieved with the previous factorization. The latter
form (6) is interesting, because it allows a simple imple-
mentation where the spectrum Y (k) is first filtered using
the response g3(fτ,m), then ŝ(τ) is computed without any
weights, and in the end ŝ(τ) is weighted with g1(τ).

The latter factorization (6) was taken into use. To get rid
of the large number free parameters (the anchor points), the
function g1(τ) is modeled as a linear function of fundamen-
tal frequency, g1(τ) = fs/τ + α, and the function g3(fτ,m)
is modeled as an inverse of the frequency fτ,m and a mod-
eration term β, g3(fτ,m) = 1/(fτ,m + β). The dashed lines
in Figure 3 show the modeled functions. As a result, the
function g(τ,m) can be finally written as

g(τ,m) =
fs/τ + α

mfs/τ + β
, (7)

where the parameters α and β are given in Sect. 3.
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Figure 2. The learned functions g1(τ) and g2(m) are shown in
the left and the middle panels, respectively. For clarity, g1(τ)
is drawn as a function of F0 (fs/τ ) instead of τ . The right
panel shows the resulting error rates for multiple-F0 estima-
tion (black) and predominant-F0 estimation (white).
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Figure 3. The learned functions g1(τ) and g3(fτ,m) are drawn
with a solid line in the left and the middle panels, respectively.
The dashed lines show the corresponding parametric models.
The right panel shows F0 estimation error rates before the
parametric modeling.

2.4. Iterative estimation and cancellation

The “direct” F0 estimator described above suffers from the
problem that a single F0 in a sound mixture produces several
peaks to ŝ(τ), and although the maximum of ŝ(τ) is a robust
indicator of one of the true F0s, the second or third-highest
peak is often due to the same sound and located at τ that is
half or twice the position of the highest peak.

Multiple-F0 estimation accuracy can be improved by an
iterative estimation and cancellation scheme where each de-
tected sound is cancelled from the mixture and ŝ(τ) is up-
dated accordingly before estimating the next F0. The basic
cancellation mechanism described here is similar to that pre-
sented in [5], except that here a fast algorithm is described
for finding the maximum of ŝ(τ) and a technique is pro-
posed for estimating the number of sounds in the mixture.

Let us first look at an efficient way of finding the maxi-
mum of ŝ(τ). Somewhat surprisingly, the global maximum
of ŝ(τ) and the corresponding value of τ can be found with
a fast algorithm that does not require evaluating ŝ(τ) for all
τ . This is another motivation for the iterative estimation and
cancellation approach where only the maximum of ŝ(τ) is
needed at each iteration.

Let us denote the minimum and maximum fundamental
period of interest by τmin and τmax, respectively, and the
required precision of sampling τ by τprec. A fast search
of the maximum of ŝ(τ) can be implemented by repeatedly
splitting the range [τmin, τmax] into smaller “blocks”, com-
puting an upper bound for the salience within each block
q, smax(q), and continuing by splitting the block with the



Algorithm 1: Fast search of the maximum of ŝ(τ)

Q← 1; τlow(1)← τmin; τup(1)← τmax; qbest ← 1;1

while τup(qbest)− τlow(qbest) > τprec do2

# Split the best block and compute new limits3

Q← Q + 14

τlow(Q)← (τlow(qbest) + τup(qbest))/25

τup(Q)← τup(qbest)6

τup(qbest)← τlow(Q)7

# Compute new saliences for the two block-halves8

for q ∈ {qbest, Q} do9

Calculate smax(q) using Equations (3)-(4)10

with g(τ,m) = fs/τlow(q)+α
mfs/τup(q)+β

τ = (τlow(q) + τup(q))/2
∆τ = τup(q)− τlow(q)11

end12

# Search again the best block13

qbest ← arg maxq∈[1,Q] smax(q)14

end15

Return τ̂ = (τlow(qbest) + τup(qbest))/2
ŝ(τ̂) = smax(qbest)16

highest smax(q). Let us denote the number of blocks by Q
and the upper and lower limits of block q by τlow(q) and
τup(q), respectively. Index of the highest-salience block is
denoted by qbest. The algorithm starts with only one block
with upper and lower limits at τmin and τmax, and then re-
peatedly splits the best block into two halves, as detailed in
Algorithm 1. 3 As a result, it gives the maximum of ŝ(τ)
and the corresponding value of τ .

On lines 13–14 of the algorithm, in order to obtain an up-
per bound for the salience ŝ(τ) within range [τlow(q), τup(q)],
Equation (3) is evaluated using the given values for g(τ,m),
τ , and ∆τ . Splitting a block later on can only decrease the
value of smax(q) when computed for the new block-halves.

Algorithm 1 is important for two reasons. First, it allows
searching the maximum of ŝ(τ) efficiently even when the
required sampling density of τ is very high. Secondly, in-
creasing the sampling density of τ has the consequence that
all the sets κτ,m in (3) contain exactly one frequency bin,
in which case the non-linear maximization operation van-
ishes and ŝ(τ) becomes a linear function of the magnitude
spectrum |Y (k)|, making it analytically more tractable.

The iterative estimation and cancellation goes as follows:
1. A residual spectrum YR(k) is initialized to equal Y (k),

and a spectrum of detected sounds YD(k) to zero.
2. A fundamental period τ̂ is estimated using YR(k) and

Algorithm 1. The maximum of ŝ(τ) determines τ̂ .
3. Harmonic partials of τ̂ are located in YR(k) at bin
〈mK/τ〉. The frequency and amplitude of each par-
tial is estimated and used to calculate its magnitude

3 It is even more efficient to start with
p

(τmax − τmin)/τprec blocks.

spectrum at the few surrounding frequency bins. The
magnitude spectrum of the m:th partial is weighted
by g(τ̂ ,m) and added to the corresponding position
of the spectrum of detected sounds, YD(k).

4. The residual spectrum is recalculated as
YR(k)← max(0, Y (k)− dYD(k)),
where d controls the amount of the subtraction.

5. If there are sounds remaining in YR(k), return to Step 2.

Note that the purpose of the cancellation is to suppress har-
monic and subharmonic peaks of τ̂ in ŝ(τ). This should
be done in such a way that the residual spectrum YR(k) is
not corrupted too much to detect remaining sounds at the
coming iterations. These conflicting requirements are effec-
tively met by weighting the partials of a detected sound by
g(τ,m) in Step 3 before adding them to YD(k). In practice
this means that the higher partials are not entirely cancelled
from the mixture since g(τ,m) ≈ 1/m. Parameter d ≈ 1
together with g(τ,m) defines the amount of subtraction.

The function g(τ,m) was re-optimized for the iterative
method using a similar optimization scheme as described
above. Despite the double role of g(τ,m) here (affecting
both the salience and the cancellation), the obtained func-
tions g1(τ), g2(m), and g3(fτ,m) were very similar to those
shown in Figs. 2–3, and the model (7) is suitable.

When the number of sounds in the mixture is not given, it
has to be estimated. This task, polyphony estimation, is ac-
complished by stopping the iteration when a newly-detected
sound τ̂j at iteration j no longer increases the quantity

S(j) =

∑j
i=1 ŝ(τ̂i)

jγ
, (8)

where γ = 0.70 was found empirically. 4 The value of j
maximizing (8) is taken as the estimated polyphony P̂ .

2.5. Joint estimation of multiple F0s

The described iterative multiple-F0 estimator is efficient and
produces good results, but it also leaves us with a couple of
open questions. How much does the iterative search algo-
rithm affect the result? Is it possible to compute saliences of
the found sounds so that the order of detecting them would
not affect? This section describes a joint estimator which
can answer these questions.

First, the salience function ŝ(τ) is calculated according
to (3). Then, I highest local maxima of ŝ(τ) are chosen as
candidate fundamental period values τi, i = 1, . . . , I . For
each candidate i, the following quantities are computed:

• Frequency bins of harmonic partials ki,m, where m is
the harmonic index and ki,m corresponds to the max-
imum of |Y (k)| in the range κm,τi

(see (4)).
4 Note that S(j) would be monotonically decreasing for γ = 1 (average

of ŝ(τ̂i):s) and monotonically increasing for γ = 0 (sum).



• Candidate spectrum Zi(k) is an estimate of the spec-
trum of candidate i, and is calculated by translating
the spectrum of the window function (Hanning) to the
positions ki,m and adding them to Zi(k) after scaling
by (d/2)g(τi,m), where d is the cancellation param-
eter from Step 4 of the iterative method.

Let us denote by P the number of simultaneous F0s to
estimate and by I a set of P different candidate indices i
(there are

(

I
P

)

different possibilities). Then the joint estima-
tion consists of finding such an index set I that maximizes

G(I) =
∑

i∈I

∑

m

g(τi,m)|Y (ki,m)|
∏

j∈I\i

(1− Zj(ki,m)),

(9)
where Zj(k) ≤ 1 because (d/2)g(τ,m) ≤ 1. By compari-
son with (1), it can be seen that the above goodness measure
implements a similar harmonic summing model but with the
difference that the salience contribution of sound i is re-
duced by “inhibition” (cancellation) from other sounds j in
I, as determined by their estimated spectrum Zj(k). In fact,
the above model is a very close equivalent to the iterative
method presented above, the difference being that here the
estimation is performed jointly instead of iteratively. The
reason why the parameter d is halved when calculating Zj(k)
is that here all sounds inhibit all others, whereas in the itera-
tive method only sounds detected at earlier iterations inhibit
(through cancellation) those detected later.

A problem with (9) is that the computational complexity
of evaluating G(I) for all

(

I
P

)

different index combinations
I is computationally impractical. A reasonably efficient im-
plementation is possible by making use of the lower bound
G̃(I) of G(I). By writing out the product in (9), it is easy
to see that G(I) ≥ G̃(I) where

G̃(I) =
∑

i∈I

∑

m

g(τi,m)|Y (ki,m)|[1−
∑

j∈I\i

Zj(ki,m)]

=
∑

i∈I

ŝ(τi)−
∑

i∈I

∑

j∈I\i

Inh(i, j) (10)

where the “inhibition” Inh(i, j) is a non-symmetric function

Inh(i, j) =
∑

m

g(τi,m)|Y (ki,m)|Zj(ki,m). (11)

From the computational viewpoint, the advantage of (10)
is that the values ŝ(τi) and Inh(i, j) can be precomputed,
making the evaluation of (10) an easy operation for different
index combinations I. Another crucial factor is that, due to
the sparseness of Zj(k), the lower bound G̃(Ic) is actually
an accurate estimate of G(Ic) so that G(Ic) ≈ G̃(Ic). The
algorithm for finding a set I which maximizes (9) is:

1. Initialize I different sets I with the individual candi-
dates τi, i = 1, . . . , I , so that set number c is initial-
ized with Ic ← {c} and G̃(Ic)← ŝ(τc).

2. Generate I × I new combinations by extending all
the existing combinations with all the individual can-
didates τi. The goodness measures of these extended
combinations can be computed recursively as

G̃(Ic∪i) = G̃(Ic)+ŝ(τi)−
∑

j∈Ic

(Inh(i, j)+Inh(j, i)).

3. Sort the I × I extended sets in descending goodness
order and retain only I best combinations with dif-
ferent goodness measures. The latter prevents from
choosing different permutations of a same set.

4. If polyphony P was not reached, return to Step 2.

5. Evaluate the exact goodness measure (9) for the I
best combinations and choose the combination with
the highest value to output.

If the polyphony P is not given, it can be estimated by eval-
uating the exact goodness measure (9) for the I best com-
bination always between the Steps 3 and 4, and by storing
the best j-size combination Ibest(j). Extending the sets is
continued as long as the following measure increases:

S(j) = G(Ibest(j))/j
γ , (12)

where the parameter γ = 0.73 was found empirically.
An advantage of the joint estimation method is that, con-

trary to the iterative system, here the order of detecting the
sounds does not affect the result. A drawback is that the
joint estimator is computationally less efficient as it requires
evaluating the function ŝ(τ) for all τ and therefore Algo-
rithm 1 cannot be used. Finding the optimal combination I
in the above algorithm is still quite efficient when 50–100
candidates τi are selected from ŝ(τ), which is roughly the
amount needed to retain the true periods among them. In
the simulations, we used I = 100.

3. Evaluation
Simulation experiments were carried out to evaluate the pro-
posed estimators. These were compared with the reference
methods [3] and [5] based on auditory models, and the ref-
erence method [4] based on spectral techniques. Test data
consisted of random mixtures of musical instrument sam-
ples with F0s between 40 and 2100 Hz, generated in the
same way as in Sect. 2.3 but of course randomizing new test
cases here. 5 The acoustic database, however, was the same,
and consisted of samples from the McGill University Master
Samples collection, the University of Iowa website, IRCAM
Studio Online, and of recordings for the acoustic guitar. In
total, there were 2842 samples from 32 musical instruments.

As estimation of the number of concurrent sounds is very
difficult in itself, we evaluate F0 estimation and polyphony
estimation separately. The parameter values α, β,and d were
the same for all the three proposed methods and were 27 Hz,

5 For the reference method [3], F0s were restricted between 40 Hz and
530 Hz, since the method is not very robust for F0s higher than this.
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Figure 4. Multiple-F0 estimation and predominant-F0 estima-
tion results in 46 ms and 93 ms analysis frames. Reading left to
right, each stack of six thin bars corresponds to the error rates
of the direct (d), iterative (i), joint (j), and reference methods
[3], [4], and [5] in a certain polyphony.
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Figure 5. Histograms of polyphony estimates for the iterative
method and a 93 ms analysis frame. The asterisks indicate the
true polyphony (1, 2, 4, and 6, from left to right).

320 Hz, and 1.0, respectively, for 46 ms analysis frame, and
52 Hz, 320 Hz, and 0.89, respectively, for 93 ms frame.

Figure 4 shows the F0 estimation results of the proposed
and the reference methods. Here the number of concur-
rent sounds (polyphony) was given as a side-information
to the estimators. The error rates are practically the same
for the proposed iterative and joint methods and the refer-
ence method [5], and these three outperform the methods
[3] and [4]. This is a very nice result, since the best refer-
ence method [5] involves computation of an auditory model,
including e.g. Fourier transforms at 70 subbands. The pro-
posed methods are considerably simpler and computation-
ally more efficient. In monophonic cases (polyph. 1), about
50% of the errors are caused by F0s between 40 and 65 Hz.

The lower panels of Figure 4 show predominant-F0 es-
timation accuracies. Here the error rates are practically the
same for the proposed direct and the iterative method and
for the reference method. The accuracy of the joint method,
however, is clearly better in high polyphonies.

Figure 5 illustrates the results of polyphony estimation
for the iterative method and a 93 ms analysis frame. Results
for the joint method were very similar and are not shown.
The asterisk indicates true polyphony in each panel, and bars
show a histogram of the estimates. The results are not fully
satisfactory, and it seems that robust estimation of the num-
ber of sounds requires more than one analysis frame.

4. Conclusions
The principle of summing harmonic amplitudes as given by
(1) is very simple, yet it suffices for predominant-F0 estima-
tion in polyphonic signals provided that the weights g(τ,m)
of different partials and periods are appropriate. In multiple-
F0 estimation, both the iterative and the joint estimator were
successful, but the iterative method admits a fast implemen-
tation and is therefore more appealing. The joint estimator,
in turn, achieves better predominant-F0 estimation. Both
methods can be seen to implement the model embodied in
the goodness measure (9), which is very simplistic consider-
ing the wide range of instruments and F0 values addressed.
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