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Abstract
This paper presents a computationally efficient method

for quantifying the degree of tonal similarity between two
pieces of music. The properties we examine are key
frequencies and average time in key, and we propose two
metrics, based on the L1 and L2 norms, for quantifying
similarity using these descriptors. The methods are applied
to 711 classical themes and variations over 71 variation
sets by 10 composers of different genres. Quantile-quantile
plots and the Kolmogorov-Smirnov measure show that the
proposed metrics exhibit strongly distinct behaviour when
assessing pieces from the same variation set, and those that
are not. Comparisons across variation sets by the same
composer, and comparisons of pieces by different
composers although result in similar distributions, are
derived from fundamentally different underlying
distributions, according to the K-S measure. We present
probabilistic analyses of the two methods based on the
distributions derived empirically. When the discrimination
threshold is set at 55, the probabilities of Type I and Type
II errors are 18.41% and 20.56% respectively for Method
1, and 15.72% and 22.94% respectively for Method 2.
Method 1 has a success rate of 99.48% when labeling
pieces as dissimilar (not from the same variation set),
while the corresponding rate for Method 2 is 99.45%.

Keywords: Music similarity, similarity assessment, music
representation, music summarization, key distribution,
pitch, music information retrieval.

1. Introduction
This paper presents a computationally efficient method

for determining tonal similarity between two pieces of
music. The information required by the system is pitch
information for any time segment, which can be derived
from MIDI or audio. We focus on the properties of key
frequencies and the average time in each key, and propose
similarity metrics based on these descriptors.

Music similarity is a complex problem because the

definition of similarity can be widely divergent and highly
subjective. Music similarity has been viewed from many
angles with different assumptions. Some aspects of
similarity include: instrumentation, timbre, melody,
harmony, rhythm, tempo, mood, lyrics, socio-cultural
backgrounds, structure, and complexity [1].

Subsequently, a challenge in music similarity research
is the determining of appropriate ground truth data. In this
paper, we have chosen variation sets as our ground truth
information on which to verify our proposed metrics for
similarity assessment. The theme and variations genre
consists of music in which an initial melody, the theme, is
first presented in an introductory section; it is then altered
as variations to the original theme in subsequent sections.
We will refer to each set of theme and variations as the
“Variation Set.”

2. Related Work
Any study of music similarity must first define its subject
of focus, whether it be low- or high-level, melodic or
rhythmic, or in linear or vertical time. We present here
some recent work that spans several representative
domains. Our work differs from these approaches in that it
focuses on pitch structure at a relatively high level,
allowing for more general classification based on vectors
describing key frequency and average time-in-key
information.

One domain of music similarity research is melody.
The melody is often the “star” of a piece. It is what we
often remember about a song. Hu, Dannenberg and Lewis
[2] used dynamic programming algorithms to compute an
‘edit distance’ as a measure of melodic dissimilarity.
Typke et al [3] developed a method where notes were
mapped to weighted points in two-dimensional space, and
melodic similarity was measured using the Earth Mover’s
Distance and the Proportional Transportation Distance.

Another domain in music similarity research is rhythm,
the pattern of proportional durations of notes. Paulus and
Klapuri [4] developed a system that measures the
similarity of two rhythmic patterns by using a
probabilistic musical meter estimation process. Hofmann-
Engl [5] represent durations as chains based on atomic
beats.  They derived rhythmic similarity from how much
two rhythms deviate in shape. Chew, Volk and Lee [6]
used the method of Inner Metric Analysis to compute a
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metric, and Dixon, Pampalk and Widmer [7] used
periodicity patterns, to assess rhythmic similarity for dance
music classification.

Work that is most closely related to the present one
with regards to the domain focus and methods used is that
by Tzanetakis, Ermolinskyi and Cook [8]. Their method
creates pitch histograms, and then extracts several features
from them for genre classification. They mention that pitch
histograms may be utilized in the determining of music
similarity. Our work goes one step further to consider key
histograms, and their behaviour under different test
situations. Since each key can be summarized as a pitch
distribution, our approach essentially considers the
distribution of pitch distributions.

In [9], we introduced the use of key distributions in
measuring similarity, and a sum-of-squared-difference
metric for quantifying similarity, and tested it on a limited
set of Mozart variations, showing the results in a self-
similarity matrix. In the current paper, we use an L1 metric
for key distribution similarity assessment, and provide in-
depth probabilistic and statistical analyses of the outcomes
of this method. We consider the additional statistic – the
mean time in key – and use the L2 norm for quantifying
similarity for (key distribution, mean-time-in-key) pairs.
The present test data set is also vastly increased from the
previous one, and now contains 711 variations from 71
Variation Sets by 10 composers.

Work that is related to ours with regards to the use of
Variation Sets is that of Pickens [10]. This work develops
a music information retrieval system where given a piece
of music as input, it returns an ordered list of similar
pieces.

3. System Description
This section describes the techniques we use to assess
music similarity. We begin by slicing a piece of music
into uniform segments and determining the key for each
slice using a key-finding algorithm. We then generate a
key histogram as well as a mean-time-in-key histogram for
the piece. These histograms summarize the tonal patterns
in the piece. The process repeated for the comparison piece,
we compare result from the two pieces. We present two
methods of this comparison. This section concludes with a
short example.

3.1 Segmentation
Each piece, say of length n, is segmented into a given
number of segments, m, of uniform length. It follows that
the length of each segment is n/m. We refer to a complete
sample of music as a “piece”. In our experiments, this
typically refers to either the theme section of a Variation
Set, or one of its variations. When comparing pieces of
differing lengths, m, remains constant while the length of
each segment depends on n. m  is constant so that the
summary description of different performances of the same
piece will be approximately the same. In our experience,
the choice of m has some effect on the final result, but is
reasonably stable over a range of m values. If m  is very

small, then each segment will be too large to provide
reasonable discriminatory information. If m is very large,
then each segment will be too small to produce any
meaningful high-level pitch structure information. The
selection of m will be further discussed in Section 4.

3.2 Key Determination
The key of each segment must be determined in order to
generate the key distribution of each piece. Any key
finding algorithm may be invoked at this stage (see [11]
for references to key finding algorithms). We use the
Center of Effect Generator algorithm [12,13] based on the
Spiral Array, a mathematical model for tonality that uses
nested helixes to represent tonal elements, such as pitch
classes and keys. The pitches in each segment of a piece
are mapped to pitch class positions on the helix using a
pitch spelling algorithm [14]. An aggregate position of
these positions is obtained by weighting each pitch class
representation by its proportional duration in the segment.
The key is then determined through a nearest neighbor
search for the nearest key representation on the major and
minor key helixes. This key finding algorithm can be used
for both MIDI and audio input [11],[13],[15]. Even though
we focus here on MIDI input, it is easy to see how our
approach may be extended and used for audio input.

3.3 Key Histograms
We use the sequence of keys calculated for the segments to
generate the key histograms. We represent the sequence of
keys as an m-dimensional vector K = {k1, k2, …, km}. Each
ki is a key identified by the key finding algorithm for
segment i. The bins of the key histogram are the 55
possible major and minor keys from Cbb to C##, shown
as a vector of pitch names, P = {p1, p2, …, p55}. P has 55
elements because the Spiral Array does not assume
enharmonic equivalence. The key histogram values are
stored in the vector F = {f1, f2, …, f55} where fi represents
the number of times an element of K is equal to the i–th
element of P.

Let us consider a simple example. If there were only
two possible keys (A and B), we would have P = {A, B}.
Assume that m = 5 and the sequence of key segments is K
= {A, A, B, B, A}. Then F = {3, 2}.

3.4 Mean-Time-In-Key Histograms
We use the vector K  to generate the Mean-Time-In-Key
histograms. Let O = {o1, o2, …, o55} be a vector such that
oi is the number of times a continuous sequence of
elements corresponding to pi occurs in the vector K . The
mean-time-in-key histogram is stored in the vector M  =
{m1, m2, …, m55}, where mi = fi/ oi. Continuing with our
previous example, O = {2, 1} and M = {1.5, 2}.

3.5 Comparing Two Pieces
This section details the methods we propose for obtaining
a similarity measure. We present two methods and will
later compare the results obtained for both. Our first
method uses vector F , and computes a distance between
them as the measure of similarity. The second method uses



both vectors F and M, and gets the distance between pairs
of values of F and M as the measure of similarity.

The selected features measure the degree of tonal
stability in a piece. A piece with an F  vector containing
peaks is more stable than a piece that has a uniformly
distributed F vector. For an F with peaks, consider its
corresponding M vector. If the values of M corresponding
to the peaks of F are large, then the piece is more stable
than if these values were small. We consider both the one-
and two-vector methods to see if including the additional
information in M gives better results.

3.5.1 Comparing Two Key Distributions
We use the distance between two probability mass
functions (p.m.f.’s) as our first measure of similarity,
which we will refer to as “Method 1”. Consider two
pieces, Piece A and Piece B, with key histograms, F = {f1,
f2, …, f55} and F' = {f '

1, f '
2, …, f '

55} respectively. We
treat F  and F' as p.m.f.’s, and measure the distance
between them using the L1 norm, shown in (1).

€ 

fi − fi
'

i=1

55
∑                                  (1)

3.5.2 Comparing Pairs of Key and Mean-Time-In-Key
Distributions

We use the Euclidean distance between two (F, M) pairs as
our second measure of similarity, which we will refer to as
“Method 2”. Let M = {m1, m 2, …, m 55} and M' = {m'

1,
m'

2, …, m '
55} be the respective mean-time-in-key

histograms for Piece A and Piece B. The measure of
similarity is based on the L2 norm, shown in (2).
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3.6 Example
At this point, we present a real example to illustrate the
methods. We use three pieces for this example. Piece A is
the theme section from Beethoven’s La Molinara, Piece B
is the third variation of the same piece, and Piece C is the
second variation of Schumann’s Symphonische Etüden.
Since Piece B is a variation of Piece A, they should be
more similar than Pieces A and C. Note that m = 50.

Consider the plots of F  shown in Figure 1. Our
assumption that Pieces A and B are similar and that Pieces
A and C are different is supported by direct inspection of
these plots. Using Method 1, we calculate a distance of 10
for Pieces A and B, and 98 for Pieces A and C.

The plots of M are shown in Figure 2. Using Method
2, we calculate a distance of 11.82 for Pieces A and B and
103.55 for Pieces A and C. These findings further support
our initial assumptions. Method 1 performs better when
comparing pieces A and B, while Method 2 performs
better when comparing pieces B and C.

4. Results
We present and discuss our results in this section. We also
discuss our motivation for choosing our particular data set.
We state our expected results and then present our actual
findings.

We briefly mentioned the selection of the segmentation
variable m. The average length of a piece in our data set is
61.3 seconds. The value of m must be such that each ki in
K is small enough to provide insight yet large enough so
as not to contain insignificant fluctuations. Initial
sensitivity analysis experiments were conducted to see the
behavior of our system as the value of m changed. We set
m to a number in the range [50, 300]. At m  = 50, each
segment has, on average, a length of 1.26 seconds. Our
system is robust within the range of values tested. We
found that at m = 50 there was less noise than at m = 300.
This led us to choose m = 50 for further experiments.

4.1 Data: Variation Sets
We have chosen to use Variation Sets as our data set since
the similarity of pieces in the same set is objectively pre-
defined by the composer, and thus less subject to dispute.
We have amassed a collection of Variation Sets from [16]
spanning ten composers and periods ranging from Baroque
and Classical, to Romantic. Table 1 summarizes the
statistics on our data set, consisting of 711 theme and
variations over 71 Variation Sets.

Figure 1. Plot of vector F for Pieces A, B, and C.

  Figure 2. Plot of vector M for Pieces A, B, and C.
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Table 1. Summary of the pieces in the data set.

Composer No. of
Variation Sets

No. of
Pieces

Avg. Piece
Length (secs)

Bach 3 48 107.48
Beethoven 20 205 50.80
Brahms 8 128 57.41
Chopin 4 21 56.90
Handel 5 40 32.30
Haydn 12 93 53.32
Liszt 3 22 36.86
Mozart 10 99 60.95
Schubert 4 34 69.56
Schumann 2 21 87.38
TOTAL 71 711 61.30

4.2 Expected Results
We assume that pieces within the same Variation Set are
similar one to another. Such an assumption was also made
in [10]. Note that the converse may not necessarily be true.
Even though we expect pieces from different Variation Sets
to be less similar than pieces from the same, we cannot
assume that they will not be similar. Even though we
distinguish between composers in our analysis, it is
unclear if the methods would be able to distinguish
between composer’s styles. Because the methods so
strongly favor pieces with the same tonal patterns, a
characteristic of variations, we expect pieces across
different Variation Sets to be less similar one to another,
even if they are by the same composer. We postulate that
our methods are better at capturing similarities at the mid-
level of theme and variations than at the composer level.

4.3 Comparing All Pieces by All Composers
We used both Methods 1 and 2 to compare all the pieces
in our data set. We compared all 711 pieces to one another
and obtained a total of 505,521 comparisons for each
method of similarity assessment. Note that we then
discarded repeated comparisons. Like the work in [10], we
have chosen to include the comparisons of pieces to
themselves in our analysis as they provide a good check of
our system. When comparing N pieces, each segmented
into m  sections, the computational complexity for
calculating all pairwise comparisons is O(mN + N2).

For each method, we extracted three groups from the
total measurements. Group 1 contains all comparisons of
pieces from the same Variation Set. Group 2 contains all
comparisons of pieces from the same composer, but
different Variation Sets. Group 3 contains all comparisons
of pieces from different composers. Since the number of
comparisons in each group differs greatly, we normalized
the results so that the distributions sum to one.

4.3.1 Analysis of Results Using Method 1
In this Section, we analyze the distributions of the three
Groups of data for Method 1. Based on our expectations
stated in Section 4.2, we would expect that the
distribution of Group 1 would differ from the distributions

of Groups 2 and 3. Also, we would expect the
distributions of Groups 2 and 3 to be similar. We
construct empirical quantile-quantile plots in order to make
these comparisons (see Figure 3), which consist of plotting
the quantiles of one empirical distribution against the
corresponding one in the other. If the distributions come
from the same underlying distribution, then the plot will
be close to the line x=y.

Figure 3. Quantile-quantile plots comparing Groups 1 & 2,
1 & 3, and 2 & 3, respectively, using Method 1.

It is clear from Figure 3 that Group 1 does not come
from the same underlying distribution as Groups 2 and 3.
Also, Groups 2 and 3 appear to be derived from the same
underlying distribution. These observations support our
initial assumptions and verify that Method 1 is successful
at distinguishing between pieces from the same and
different Variation Sets.

Table 2. Results of K-S test for Method 1.
Comparison

Groups
K-S
stat p-value Reject H0?

1 and 2 0.588 0.00 Yes
1 and 3 0.612 0.00 Yes
2 and 3 0.051 1.957x10–10 Yes

We also conduct a Kolmogorov-Smirnov (K-S) test to
compare the distributions of the three groups. The null
hypothesis, H0, for this test is that two sets come from the
same underlying continuous distribution. We present the
results of this test in Table 2. This test verifies that the
distribution of Group 1 is indeed significantly different
from the distributions of Groups 2 and 3. Even though the
distributions for Groups 2 and 3 appear to be similar, and
the K-S statistic is correspondingly smaller, the test
reveals that they come from different underlying
distributions.

The distributions of Groups 1, 2 and 3 are shown in
Figure 4. By inspection, we can see that the plot for Group
1 is significantly different from that for Groups 2 and 3,
while Groups 2 and 3 appear much more similar.

Next, we perform some probabilistic analyses of
classification errors should Method 1 be used for music
categorization. Recall that Method 1 returns a single value
for every comparison made between two pieces. If two
pieces are exactly the same, this value is equal to zero. As
the degree of difference between the pieces increases, so
does this measure. In a rudimentary categorization scheme,
we could select a cutoff point for determining if the two
can be considered variations one of another. If the value is
less than this cutoff point, we conclude that the pieces are
similar. If it is greater than or equal to the cutoff point, we
conclude that the pieces are dissimilar.
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Figure 4. Distributions of similarity measures, obtained
using Method 1, divided into Groups 1, 2 and 3.

Suppose the cutoff point is 55, the point at which the
outlines of the three distributions cross. Let

A = “Two pieces are from the same Variation Set,” and
B = “Their similarity value is less than 55.”

Next we compute Type I (false positive) and Type II (false
negative) probabilities for this strategy.  The probability of
a Type I error, P(B | A') = 18.41%. The probability of a
Type II error, P(B' | A) = 20.56%.

Consider the question: if we pick a data point at
random, and its value is less than 55, what is the
probability that this data point belongs to Group 1? We
can restate this question as P(A | B). Also consider the
converse of this question: if we pick a data point at
random, and its value is greater than or equal to 55, what
is the probability that this data point does not belong to
Group 1? This can be restated as P(A' | B'). We consider
three possible scenarios: (1) when we consider all Variation
Set comparisons for pieces by only one composer (i.e. A'
consists of members of Group 2 only); (2) when we
consider single-composer and different-composer Variation
Set comparisons (A' = Group 3); and, (3) when we
consider all comparisons (A' = Groups 2 and 3). The
results are summarized in Table 3.

Table 3. Bayesian reasoning for Method 1.

Groups Considered as A' P(A | B) P(A' | B')

Group 2 34.90% 96.66%
Group 3 9.61% 99.39%
Groups 2 and 3 8.15% 99.48%

Since Groups 2 and 3 have far more data points than
Group 1, a randomly selected data point is more likely to
be from one of these groups than Group 1. Consider the
probabilities of Groups 1, 2 and 3 in Table 3.  When we
restrict ourselves to only the comparisons of Variation Sets
by the same composer (scenario 1), P(A | B) is 34.90%
and P(A' | B') is 96.66%. When we consider same
Variation Set and different composers comparisons
(scenario 2), P(A | B) is 9.61% and P(A' | B') is 99.39%.
When considering all comparisons (scenario 3), P(A | B) is
8.15% and P(A' | B') is 99.48%. Hence, in all cases, the
probability of a false negative is far higher than that of a
true positive. This is to be expected since the number of

pieces in the same Variation Set is far exceeded by those
that are not.

4.3.2 Analysis of Results Using Method 2
In this Section, we carry out the same type of analysis for
Method 2. As before, we construct empirical quantile-
quantile plots for comparisons of Groups 1 and 2, 1 and 3,
and 2 and 3. The resulting plots are shown in Figure 5. By
inspection, it is clear from Figure 5 that the data points of
Group 1 are not derived from the same underlying
distributions as Groups 2 and 3. And, the data points in
Groups 2 and 3 seem to come from similar underlying
distributions. These observations support our initial
assumptions, and verify that Method 2 is also successful at
distinguishing between pieces from the same Variation
Set.

Figure 5. Quantile-quantile plots comparing Groups 1 & 2,
1 & 3, and 2 & 3, respectively, using Method 2.

We again conduct a K-S test to compare the
distributions of the groups, this time using Method 2.
Recall that the null hypothesis is that two sets come from
the same underlying continuous distribution. We present
the results of this test in Table 4.

Table 4. Results of K-S test for Method 2.

Comparison Groups K-S stat p-value Reject H0?

1 vs. 2 0.588 0.00 Yes
1 vs. 3 0.598 0.00 Yes
2 vs. 3 0.041 5.623x10–7 Yes

This test verifies that the distribution of Group 1 is
significantly different from those of Groups 2 and 3. The
results of the comparisons of Groups 2 and 3 show that
they come from different underlying distributions.
However, note that the K-S statistic for this comparison is
significantly smaller. We may conclude, as we did with
Method 1, that even though Groups 2 and 3 do not come
from the same underlying distributions, they are much
more similar one with another than with Group 1.

Figure 6 is a visualization of the distributions of
Groups 1, 2 and 3. Refer to this figure for further
confirmation that the distribution of Group 1 is visibly
different from the distributions of Group 2 and 3, while
the distributions of Group 2 and 3 are more similar.

Again, we calculate the error rates and probabilities for
Method 2. As before, the outlines of all three plots
converge at the distance value 55, which we set as the
cutoff point. In this case, the probability of a Type I error
is P(B | A') = 15.72%, and the probability of a Type II
error is P(B' | A) = 22.94%. Comparing these numbers
with those for Method 1, we find that Method 1 has a
lower Type II error (false negative) probability, while



Method 2 has a lower Type I error (false positive)
probability.

 We also compute P(A | B) and P(A' | B') for Method 2.
We consider the same three scenarios as in Method 1. The
results are presented in Table 5. When considering only the
Variation Sets by the same composer (scenario 1), P(A | B)
is 37.98% and P(A' | B') is 96.45%. When we consider
same Variation Set and different composers comparisons
(scenario 2), P(A | B) is 10.55% and P(A' | B') is 99.36%.
When considering all possible pairs of pieces (scenario 3),
P(A | B) is 9.00% and P(A' | B') is 99.45%.

Table 5. Bayesian reasoning for Method 2.

Groups Considered as A' P(A | B) P(A' | B')

Group 2 37.98% 96.45%
Group 3 10.55% 99.36%
Groups 2 and 3 9.00% 99.45%

5. Conclusion
We have shown that key histograms can be used to

develop musically accurate summarization of pieces. Our
selection of a data set has helped us establish ground truth
in an area of research that often lacks it. We have provided
two efficient methods for determining the level of
similarity between two pieces. Both methods are rather
successful in identifying similarity at the level of Variation
Sets. Both methods are comparable in their level of
success. When the cutoff statistic is set at 55, Method 1
has a success rate of 99.48% in labeling pieces as
dissimilar, while the corresponding rate for Method 2 is
99.45%. Future work will consider comparisons of data
sets normalized to the same key. This will allow us to
better compare transposed variations and fluctuations in
key. We will also consider variations on the same theme
by several composers.
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Figure 6. Distributions of similarity measures, obtained
using Method 2, divided into Groups 1, 2 and 3.
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