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Abstract 
OMR (Optical Music Recognition) programs have been 

available for years, but they still leave much to be desired 

in terms of accuracy. We studied the feasibility of 

achieving substantially better accuracy by using the output 

of several programs to “triangulate” and get better results 

than any of the individual programs; this multiple-

recognizer approach has had some success with other 

media but, to our knowledge, has never been tried for 

music. A major obstacle is that the complexity of music 

notation is such that evaluating OMR accuracy is difficult 

for any but the simplest music. Nonetheless, existing 

programs have serious enough limitations that the multiple-

recognizer approach is promising. 
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1. Recognizers and Multiple Recognizers in 

Text and Music 

This report describes research on an approach to improved 

OMR (Optical Music Recognition) that, to our knowledge, 

has never been tried with music before, though it has been 

in use for some time in other domains, in particular OCR 

(Optical Character Recognition).  

The basis of an optical symbol-recognition system of 

any type is a recognizer, an algorithm that takes an image 

that the system suspects represents one or more symbols 

and decides which, if any, of the possible symbols to be 

recognized the image contains. The recognizer works by 

first segmenting the image into subimages, then applying a 

classifier, which decides for each subimage on a single 

symbol or none. The fundamental idea of a multiple-

recognizer system is to take advantage of several pre-

existing but imperfect systems by comparing their results to 

“triangulate” and get substantially higher accuracy than any 

of the individual systems. This has been done for OCR by 

Prime Recognition. Its creators reported a very substantial 

increase in accuracy (Prime Recognition, 2005); they gave 

no supporting evidence, but the idea of improving accuracy 

this way is certainly plausible. The goal of multiple-

recognizer OMR (henceforth “MR” OMR) is to do the 

same with music, and the basic question for such a system 

is how to merge the results of the constituent single-

recognizer (henceforth “SR” OMR) systems, i.e., how to 

resolve disagreements among them in the way that 

increases accuracy the most. 

The simplest merging algorithm for a MR system is to 

take a “vote” on each symbol or sequence of symbols and 

assume that the one that gets the most votes is correct. 

(Under ordinary circumstances—at least with text—a 

unanimous vote is likely on most symbols.) This appears to 

be what the Prime Recognition system does, with three to 

six SR systems voting on a character-by-character basis. A 

slightly more sophisticated approach is to test in advance 

for the possibility that the SR systems are of varying 

accuracy, and, if so, to weight the votes to reflect that. 

But music is so much more complex than text that such 

simple approaches appear doomed to failure. To clarify the 

point, consider an extreme example. Imagine that system A 

always recognizes notehead shapes and flags on notes 

correctly; system B always recognizes beams correctly; and 

system C always recognizes augmentation dots correctly. 

Also say that each does a poor job of identifying the 

symbols the others do well on, and hence a poor job of 

finding note durations. Even so, a MROMR system built on 

top of them and smart enough to know which does well on 

which symbols would get every duration right! System A 

might find a certain note—in reality, a dotted-16th note 

that is part of a beamed group—to have a solid notehead 

with no flags, beams, or augmentation dots; B, two beams 

connected (unreasonably) to a half-note head with two 

dots; C, an “x” head with two flags and one augmentation 

dot. Taking A’s notehead shape and (absence of) flags, B’s 

beams, and C’s augmentation dots gives the correct 

duration.  See Figure 1. 
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For music, then, it seems clear that one should begin by 

studying the pre-existing systems in depth, not just 

measuring their overall accuracy, and looking for specific 

rules describing their relative strengths and weaknesses that 

an MROMR system can exploit. 

It should also be noted that fewer high-quality SR 

systems exist for music, so it is important to get as much 

information as possible from each. 

1.1 Alignment 

Music as compared to text presents a difficulty of an 

entirely different sort. With any type of material, before 

you can even think of comparing the symbolic output of 

several systems, you must know which symbols output by 

each system correspond, i.e., you must align the systems’ 

output. (Note that we use the verb “to align” in the 

computer scientist’s symbol-matching sense, not the usual 

geometric sense.) Aligning two versions of the same text 

that differ only in the limited ways to be expected of OCR 

is straightforward. But with music, even monophonic 

music, the plethora of symbols and of relationships among 

them (articulation marks and other symbols “belong” to 

notes; slurs, beams, etc., group notes horizontally, and 

chords group them vertically) makes it much harder. And, 

of course, most music of interest to most potential users is 

not monophonic. Relatively little research has been done to 

date on aligning music in symbolic form; see Kilian & 

Hoos (2004). 

2. MROMR Evaluation and Related Work 

Obviously, the only way to really demonstrate the value of 

a MROMR system would be to implement one, test it, and 

obtain results showing its superiority. However, 

implementing any system at all, on top of conducting the 

necessary research to design it, was out of the question in 

the time available for the study described here. Equally 

important, the evaluation of OMR systems in general is in a 

primitive state. Not much progress has been made in the 

ten years since the groundbreaking study by Nick Carter 

and others (Selfridge-Field, Carter, et al, 1994). A paper by 

Droettboom & Fujinaga (2004) makes clear the difficulty 

of evaluating OMR, pointing out that “a true evaluation of 

an OMR system requires a high-level analysis, the 

automation of which is a largely unsolved problem.” This 

is particularly true for the “black box” commercial 

SROMR programs, offering no access to their internal 

workings, against which we would probably be evaluating 

the MROMR. And the manual techniques available without 

automation are, as always, costly and error-prone. Two 

interesting recent attempts to make OMR evaluation more 

systematic are Bellini et al (2004) and Ng et al (2004). 

Bellini et al propose metrics based on weights assigned by 

experts to different types of errors. Ng  et al describe 

methodologies for OMR evaluation in different situations. 

Automation aside, it is not clear whether an evaluation 

should consider the number of errors or the amount of 

work necessary to correct them. The latter is more relevant 

for many purposes, but it is very dependent on the tools 

available, e.g., for correcting the pitches of notes resulting 

from a wrong clef. Also (and closely related), should 

“secondary errors” clearly resulting from an error earlier in 

the OMR process be counted or only primary ones? For 

example, programs sometimes fail to recognize part or all 

of a staff, and as a result miss all the symbols on that staff. 

Finally, with media like text, it is reasonable to assume that 

all symbols are equally important; with music, that is not 

even remotely the case. 

Under the circumstances, all we can do is to describe the 

basis for an MROMR system and comment on how 

effective it would likely be. 

2.1 Methodology 

2.1.1 Programs Tested 

We studied three of the leading commercial programs 

available as of spring 2005: PhotoScore 3.10, SmartScore 

3.3 Pro, and SharpEye 2.63. All are distributed more-or-

less as conventional “shrink wrap” programs, effectively 

“black boxes” as the term is defined above. We also 

considered Gamut/Gamera, one of the leading academic-

research systems (MacMillan, Droettboom, & Fujinaga, 

2002). But Gamut/Gamera’s great flexibility—it is fully 

user-trainable for the “typography” of any desired corpus 

of music—meant that it would have taken too long to get 

started. 

2.1.2 Test Data and Procedures 

While the “largely unsolved problem” of “a true 

evaluation” is a serious obstacle for building a working 

MROMR system, determining rules for designing one is 

rather different from the standard evaluation situation. The 

idea here is not to say how well a system performs by some 

kind of absolute measures, but to say in detail how the 

SROMR systems compare to each other.  

What are the appropriate metrics for such a detailed 

comparison? We considered three questions, two of them 

already mentioned under Evaluation. (a) Do we care more 

about minimizing number of errors, or about minimizing 

time to correct? Also (and closely related), (b) should we 

count “secondary errors” or only primary ones? Finally, (c) 

how detailed a breakdown of symbols do we want? In 

order to come up with a good multiple-recognizer 

algorithm, we need a precise description of errors. 

Therefore the answer to (a) is minimizing number of 

errors; to (b) is, to the greatest extent possible, we should 

not count secondary errors. For item (c), consider the 

“extreme example” of three programs attempting to find 

note durations we discussed before, where all the 

information needed to reconstruct the original notes is 



available, but distributed among the programs. So, we want 

as detailed a breakdown as possible. 

We adopted a strategy of using as many approaches as 

possible to gathering the data. We assembled a test 

database of about five full pages of “artificial” examples, 

including the well-known “OMR Quick-Test” (Ng & Jones, 

2003), and 20 pages of music from published editions. The 

database has versions of all pages at 300 and 600 dpi, with 

eight bits of grayscale; we chose these parameters based on 

information from Fujinaga and Riley (2002, plus personal 

communication from both, July 2005). In most cases, we 

scanned the pages ourselves; in a few, we used page image 

files produced directly via notation programs or sent to us. 

With this database, we planned to compare fully-automatic 

and therefore objective (though necessarily very limited) 

measures with semi-objective hand error counts, plus a 

completely subjective “feel” evaluation.  

We also considered documentation for the programs and 

statements by expert users. We collected advice from 

skilled, regular users of each program as to the optimal 

settings of their parameters, among other things, intending 

to rely on their advice for our experiments. However, it 

took much longer than expected to locate experts on each 

program and to get useful advice from them; as a result, 

some of the settings we used probably were not ideal, at 

least for our repertoire. 

 

2.1.3 Automatic Comparison and Its Challenges 

The fully-automatic measures were to be implemented via 

approximate string matching of MusicXML files generated 

from the OMR programs. With this automation, we 

expected to be able to test a large amount of music. 

However, the fully-automatic part ran into a series of 

unexpected problems that delayed its implementation. For 

example, with PhotoScore, comparing the MusicXML 

generated to what the program displays in its built-in editor 

often showed serious discrepancies. SharpEye did not have 

this problem, but—since it has no “Print” command—we 

opened its MusicXML files and printed them with Finale. 

Finale sometimes misrepresented SharpEye's results, 

causing much confusion until we realized was happening. 

2.1.4 Hand Error Count 

The hand count of errors, in three pages of artificial 

examples and eight of published music, was relatively 

coarse-grained in terms of error types. We distinguished 

only seven types of errors, namely: 

• Wrong pitch of note (even if due to extra or missing 

accidentals) 

• Wrong duration of note (even if due to extra or 

missing augmentation dots) 

• Misinterpretation (symbols for notes, notes for 

symbols, misspelled text, slurs beginning/ending on 

wrong notes, etc.) 

• Missing note (not rest or grace note) 

• Missing symbol other than notes (and accidentals and 

augmentation dots) 

• Extra symbol (other than accidentals and augmentation 

dots) 

• Gross misinterpretation (e.g., missing staff) 

For consistency, we evolved a fairly complex set of 

guidelines to be used in the process of scanning and 

examining the music. All the hand counting was done by 

the creators of the guidelines and nearly all by a single 

person (Schindele), so we are confident our results have a 

reasonably high degree of consistency. 

2.1.5 “Feel” Evaluation 

We also did a completely subjective “feel” evaluation of a 

subset of the music used in the hand error count, partly as a 

so-called reality check on the other results, and partly in 

the hope that some unexpected insight would arise that 

way. The eight subjects were music librarians and 

graduate-student performers affiliated with a large 

university music school. We gave them pairs of pages of 

music—an original, and a version printed from the output 

of each OMR program of a 300-dpi scan—to compare. 

There were two originals: a monophonic page of Bach, and 

a page of Mozart piano music. Thus, with the three OMR 

versions of each original, each subject saw a total of six 

pairs. The Mozart page is the same one used by Sapp 

(2005); in fact, we used his scans of the page. 

Based on results of the above tests, we also created and 

tested another page of artificial examples, “Questionable 

Symbols”, intended to highlight differences between the 

programs: we will say more about this later. 

2.1.6 Intellectual Property Rights and Publication Dates 

An important consideration for any serious music-encoding 

project, at least for academic purposes, is the intellectual-

property status of the publications to be encoded. 

Obviously the safest approach, short of potentially 

spending large amounts of time and money to clear the 

rights, is to use only editions that are clearly in the public 

domain. In general, to cover both Europe and the U.S., this 

means that the composer must have been dead for more 

than 70 years, and the edition must have been published 

before 1923. This restriction is somewhat problematic 

because music-engraving practice has changed gradually 

over the years, and perhaps less gradually since the advent 

of computer-set music, and the commercial OMR programs 

are undoubtedly optimized for relatively-recent editions. 

For this study, we used a mixture of editions from the 

public-domain and non-public-domain periods, plus some 

very recent computer-set examples. 

3. Results 

As a result of the difficulties with the fully-automatic 

system, we ended up relying almost entirely on the hand 



error counts, plus expert opinions and documentation. The 

following results attempt to reveal the strengths and 

weaknesses of each program, with an eye toward 

integrating that data into a future MROMR system. 

3.1 Hand Error Count Results 

Results of the hand error counts may be seen in Figures 2 

through 5. The tables and graphs demonstrate some of the 

main points: 

• With our test pages, the higher resolution did not 

really help. This was as expected, given that none of 

the test pages had very small staves. In fact, it had 

little effect on SharpEye and SmartScore. PhotoScore 

was much less predictable: sometimes it did better at 

the higher resolution, sometimes worse. 

• The programs generally had more trouble with more 

complex and more crowded pages. This was also as 

expected. 

• Despite its generally good accuracy and its high rating 

in the “feel” evaluation (see below), SharpEye made 

many errors on note durations. Most of these are 

because of its problems recognizing beams. 

• By the guidelines of Byrd (2004), which seem 

reasonable for high-quality encodings, all three 

programs were well above acceptable limits in terms 

of note pitch and duration for multiple pages. For 

example, SharpEye had error rates for note duration 

over 1% on several of our test pages, and over 4% on 

one (see Figure 5). Byrd’s guidelines say 0.5% is the 

highest acceptable rate. For note pitch, SharpEye had 

an error rate over 1% for one test page and nearly 1% 

for another (Figure 4), while Byrd’s limit for pitch 

error is only 0.2%. 

We also did a more detailed count of errors in a few 

specific symbols other than notes: C clefs, text, hairpin 

dynamics, pedal-down marks, and 1
st
 and 2

nd
 endings. 

These are included in the Total Errors graphs, figures 2 and 

3. 
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Figure 2. Total Errors at 300 dpi 
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 Figure 3. Total Errors at 600 dpi 
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 Figure 4. Note Pitch Errors at 300 dpi  
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 Figure 5. Note Duration Errors at 300 dpi 

3.2 “Feel” Evaluation Results 

As a “reality check”, this confirmed the hand error count 

results showing that all of the programs did worse on more 

complex music, and, in general, that SharpEye was the 

most accurate of the three programs. One surprise was that 

the subjects considered SmartScore the least accurate, but 

not by much: its rating and PhotoScore’s were very close. 

The gap from SharpEye to PhotoScore was not great either, 

but it was considerably larger. 

The rating scale of 1 to 7 was presented to the subjects 

as follows: 1 = very poor, 2 = poor, 3 = fair, 4 = fairly 

good, 5 = good, 6 = very good, and 7 = excellent. 



For OMR accuracy on this scale, SharpEye averaged 3.41 

(halfway from “fair” to “fairly good”) across both pages; 

SmartScore, 2.88 (a bit below “fair”), and PhotoScore, 

3.03 (barely above “fair”); see Table 2. Several of the 

subjects offered interesting comments, though no great 

insights.  

Table 2. Subjective OMR Accuracy 

 
Test Page 

8 (Bach) 

Test Page 

21 (Mozart) 

Average 

PhotoScore 3.94 2.13 3.03 

SharpEye 4.44 2.38 3.41 

SmartScore 3.88 1.88 2.88 

3.3 Integrating Information from All Sources 

We created and tested another page of artificial examples, 

“Questionable Symbols”, intended to demonstrate 

significant differences among the programs. This brief 

example of musical notation, including fingering markings, 

differently shaped noteheads, tremolo markings, and 

several other common music notations, was created from 

our testing and other information sources on the programs’ 

capabilities: their manuals, statements on the boxes they 

came in, and comments by experts. Of course claims in the 

manuals and especially on the boxes should be taken with 

several grains of salt, and we did that. While this data is not 

included in the figures in 3.1, it did provide some insight 

about various quirks of the three programs. 

3.4 Rules for MROMR 

Based on our research, we developed a set of 17 possible 

rules for an MROMR system. Here are four, stripped of 

justification: 

1. In general, SharpEye is the most accurate. 

2. PhotoScore often misses C clefs, at least in one-staff 

systems. 

3. For text (excluding lyrics and standard dynamic-level 

abbreviations like “pp”, “mf”, etc.), PhotoScore is the most 

accurate. 

4. SharpEye is the worst at recognizing beams, i.e., the 

most likely to miss them completely. 

These rules are, of course, far too vague to be used as 

they stand, and they apply to only a very limited subset of 

situations encountered in music notation; 50 or even 100 

rules would be a more reasonable number. Both the 

vagueness and the limited situations covered are direct 

results of the fact that we inferred the rules by inspection of 

just a few pages of music and OMR versions of those 

pages, and from manually-generated statistics for the OMR 

versions. Finding a sufficient number of truly useful rules 

is not likely to happen without examining a much larger 

amount of music—say, ten times the 15 or so pages in our 

collection that we gave more than a passing glance, if not 

more.  This would be a very arduous task to perform 

manually. 

4. Conclusions: Prospects for Building a 

Useful System 

It seems clear that by far the best way of examining 

enough music to infer an adequate set of rules would be 

with automatic processes. This is especially true because 

building MROMR on top of independent SROMR systems 

involves a moving target. As the rules above suggest, 

SharpEye was more accurate than the other programs on 

most of the features we tested, so, with these systems, the 

question reduces to one of whether it is practical to 

improve on SharpEye’s results by much. One way in it 

clearly is practical is for note durations. A more precise 

statement of our rule 4 (above) is “when SharpEye finds no 

beams but the other programs agree on a nonzero number 

of beams, use the other programs”. This rule would cut 

SharpEye’s note-duration errors by a factor of 3, i.e., to a 

mean of 0.51%, improving its performance in this respect 

from the worst of the three programs to by far the best. 

However, since the conclusion of our study, major 

upgrades to both PhotoScore and SmartScore have been 

released. Other upgrades are very likely forthcoming, and, 

of course, a new program might do well enough to be 

useful. In any case, the moving-target aspect should be 

considered in the design process. In particular, devoting 

more effort to almost any aspect of evaluation is probably 

worthwhile, as is a convenient knowledge representation, 

i.e., way of expressing whatever rules one wants to 

implement.  

One factor we did not consider seriously enough at the 

beginning of this study is the fact that all of the commercial 

systems have built in “split-screen” editors to let users 

correct the programs’ inevitable mistakes: these editors 

show the OMR results aligned with the original scanned-in 

image. As general-purpose music-notation editors, it is 

doubtful they can compete with programs like Sibelius and 

Finale, but for this purpose, being able to make corrections 

in a view that makes it easy to compare the original image 

and the OMR results is a huge advantage. The ideal way 

might be to write a new split-screen editor; that would be a 

major undertaking, though it could be extremely useful for 

other purposes, e.g., an interactive music version-

comparing program. Otherwise, it could probably be done 

by feeding “enhanced” output in some OMR program’s 

internal format back into it. Documentation on SharpEye’s 

format is available, so the problem should not be too 

difficult. 

4.1 Chances for Significant Gains and a Different 

Kind of MROMR 

Leaving aside the vagueness and limitations of our rules, 

and the question of alignment before they could be applied, 



more work will be needed to make it clear how much rules 

like these could actually help. But it is clear that help is 

needed, even with notes: as we have said, in our tests, all of 

the programs repeatedly went well beyond reasonable 

limits for error rates for note pitch and note duration. 

This suggests using a very different MROMR method, 

despite the fact that it could help only with note pitches and 

durations: we refer to using MIDI files as a source of 

information. This is particularly appealing because it 

should be relatively easy to implement a system that uses a 

MIDI file to correct output from an OMR program, and 

because there are already collections like the Classical 

Archives (www.classicalarchives.com), with its tens of 

thousands of files potentially available at very low cost. 

However, the word “potentially” is a big one; these files 

are available for “personal use” for almost nothing, but the 

price for our application might be very different. Besides, 

many MIDI files are really records of performances, not 

scores, so the number that would be useful for this purpose 

is smaller—probably much smaller—than might appear. 

4.2 Advancing the State of the Art 

The results described above are encouraging enough that 

we plan to continue working along the same lines towards 

an implementation of a MROMR system in the near future. 

To help advance the state of the art of OMR, we also plan 

to make our test collection (the files of scanning images, 

groundtruth files, and OMR-program output files) and 

findings available to the community in an informal way. 

For those interested in learning more about our work, an 

extended version of this report is available, together with 

several supporting documents (exact results of the hand 

error counts, “Questionable Symbols”, the full list of 

possible rules, etc.) on the World Wide Web at 

http://www.informatics.indiana.edu/donbyrd/MROMRPap. 
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