
Prospects for Improving OMR with Multiple Recognizers

Donald Byrd

School of Informatics and School of Music

Indiana University, Bloomington

donbyrd@indiana.edu

Megan Schindele

School of Music

Indiana University, Bloomington

mhschind@indiana.edu

Abstract
OMR (Optical Music Recognition) programs have been

available for years, but they still leave much to be desired

in terms of accuracy. We studied the feasibility of

achieving substantially better accuracy by using the output

of several programs to “triangulate” and get better results

than any of the individual programs; this multiple-

recognizer approach has had some success with other

media but, to our knowledge, has never been tried for

music. A major obstacle is that the complexity of music

notation is such that evaluating OMR accuracy is difficult

for any but the simplest music. Nonetheless, existing

programs have serious enough limitations that the multiple-

recognizer approach is promising.

Keywords: Optical Music Recognition, OMR, classifier,

recognizer

1. Recognizers and Multiple Recognizers in

Text and Music

This report describes research on an approach to improved

OMR (Optical Music Recognition) that, to our knowledge,

has never been tried with music before, though it has been

in use for some time in other domains, in particular OCR

(Optical Character Recognition).

The basis of an optical symbol-recognition system of

any type is a recognizer, an algorithm that takes an image

that the system suspects represents one or more symbols

and decides which, if any, of the possible symbols to be

recognized the image contains. The recognizer works by

first segmenting the image into subimages, then applying a

classifier, which decides for each subimage on a single

symbol or none. The fundamental idea of a multiple-

recognizer system is to take advantage of several pre-

existing but imperfect systems by comparing their results to

“triangulate” and get substantially higher accuracy than any

of the individual systems. This has been done for OCR by

Prime Recognition. Its creators reported a very substantial

increase in accuracy (Prime Recognition, 2005); they gave

no supporting evidence, but the idea of improving accuracy

this way is certainly plausible. The goal of multiple-

recognizer OMR (henceforth “MR” OMR) is to do the

same with music, and the basic question for such a system

is how to merge the results of the constituent single-

recognizer (henceforth “SR” OMR) systems, i.e., how to

resolve disagreements among them in the way that

increases accuracy the most.

The simplest merging algorithm for a MR system is to

take a “vote” on each symbol or sequence of symbols and

assume that the one that gets the most votes is correct.

(Under ordinary circumstances—at least with text—a

unanimous vote is likely on most symbols.) This appears to

be what the Prime Recognition system does, with three to

six SR systems voting on a character-by-character basis. A

slightly more sophisticated approach is to test in advance

for the possibility that the SR systems are of varying

accuracy, and, if so, to weight the votes to reflect that.

But music is so much more complex than text that such

simple approaches appear doomed to failure. To clarify the

point, consider an extreme example. Imagine that system A

always recognizes notehead shapes and flags on notes

correctly; system B always recognizes beams correctly; and

system C always recognizes augmentation dots correctly.

Also say that each does a poor job of identifying the

symbols the others do well on, and hence a poor job of

finding note durations. Even so, a MROMR system built on

top of them and smart enough to know which does well on

which symbols would get every duration right! System A

might find a certain note—in reality, a dotted-16th note

that is part of a beamed group—to have a solid notehead

with no flags, beams, or augmentation dots; B, two beams

connected (unreasonably) to a half-note head with two

dots; C, an “x” head with two flags and one augmentation

dot. Taking A’s notehead shape and (absence of) flags, B’s

beams, and C’s augmentation dots gives the correct

duration. See Figure 1.

Figure 1.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

© 2006 University of Victoria

For music, then, it seems clear that one should begin by

studying the pre-existing systems in depth, not just

measuring their overall accuracy, and looking for specific

rules describing their relative strengths and weaknesses that

an MROMR system can exploit.

It should also be noted that fewer high-quality SR

systems exist for music, so it is important to get as much

information as possible from each.

1.1 Alignment

Music as compared to text presents a difficulty of an

entirely different sort. With any type of material, before

you can even think of comparing the symbolic output of

several systems, you must know which symbols output by

each system correspond, i.e., you must align the systems’

output. (Note that we use the verb “to align” in the

computer scientist’s symbol-matching sense, not the usual

geometric sense.) Aligning two versions of the same text

that differ only in the limited ways to be expected of OCR

is straightforward. But with music, even monophonic

music, the plethora of symbols and of relationships among

them (articulation marks and other symbols “belong” to

notes; slurs, beams, etc., group notes horizontally, and

chords group them vertically) makes it much harder. And,

of course, most music of interest to most potential users is

not monophonic. Relatively little research has been done to

date on aligning music in symbolic form; see Kilian &

Hoos (2004).

2. MROMR Evaluation and Related Work

Obviously, the only way to really demonstrate the value of

a MROMR system would be to implement one, test it, and

obtain results showing its superiority. However,

implementing any system at all, on top of conducting the

necessary research to design it, was out of the question in

the time available for the study described here. Equally

important, the evaluation of OMR systems in general is in a

primitive state. Not much progress has been made in the

ten years since the groundbreaking study by Nick Carter

and others (Selfridge-Field, Carter, et al, 1994). A paper by

Droettboom & Fujinaga (2004) makes clear the difficulty

of evaluating OMR, pointing out that “a true evaluation of

an OMR system requires a high-level analysis, the

automation of which is a largely unsolved problem.” This

is particularly true for the “black box” commercial

SROMR programs, offering no access to their internal

workings, against which we would probably be evaluating

the MROMR. And the manual techniques available without

automation are, as always, costly and error-prone. Two

interesting recent attempts to make OMR evaluation more

systematic are Bellini et al (2004) and Ng et al (2004).

Bellini et al propose metrics based on weights assigned by

experts to different types of errors. Ng et al describe

methodologies for OMR evaluation in different situations.

Automation aside, it is not clear whether an evaluation

should consider the number of errors or the amount of

work necessary to correct them. The latter is more relevant

for many purposes, but it is very dependent on the tools

available, e.g., for correcting the pitches of notes resulting

from a wrong clef. Also (and closely related), should

“secondary errors” clearly resulting from an error earlier in

the OMR process be counted or only primary ones? For

example, programs sometimes fail to recognize part or all

of a staff, and as a result miss all the symbols on that staff.

Finally, with media like text, it is reasonable to assume that

all symbols are equally important; with music, that is not

even remotely the case.

Under the circumstances, all we can do is to describe the

basis for an MROMR system and comment on how

effective it would likely be.

2.1 Methodology

2.1.1 Programs Tested

We studied three of the leading commercial programs

available as of spring 2005: PhotoScore 3.10, SmartScore

3.3 Pro, and SharpEye 2.63. All are distributed more-or-

less as conventional “shrink wrap” programs, effectively

“black boxes” as the term is defined above. We also

considered Gamut/Gamera, one of the leading academic-

research systems (MacMillan, Droettboom, & Fujinaga,

2002). But Gamut/Gamera’s great flexibility—it is fully

user-trainable for the “typography” of any desired corpus

of music—meant that it would have taken too long to get

started.

2.1.2 Test Data and Procedures

While the “largely unsolved problem” of “a true

evaluation” is a serious obstacle for building a working

MROMR system, determining rules for designing one is

rather different from the standard evaluation situation. The

idea here is not to say how well a system performs by some

kind of absolute measures, but to say in detail how the

SROMR systems compare to each other.

What are the appropriate metrics for such a detailed

comparison? We considered three questions, two of them

already mentioned under Evaluation. (a) Do we care more

about minimizing number of errors, or about minimizing

time to correct? Also (and closely related), (b) should we

count “secondary errors” or only primary ones? Finally, (c)

how detailed a breakdown of symbols do we want? In

order to come up with a good multiple-recognizer

algorithm, we need a precise description of errors.

Therefore the answer to (a) is minimizing number of

errors; to (b) is, to the greatest extent possible, we should

not count secondary errors. For item (c), consider the

“extreme example” of three programs attempting to find

note durations we discussed before, where all the

information needed to reconstruct the original notes is

available, but distributed among the programs. So, we want

as detailed a breakdown as possible.

We adopted a strategy of using as many approaches as

possible to gathering the data. We assembled a test

database of about five full pages of “artificial” examples,

including the well-known “OMR Quick-Test” (Ng & Jones,

2003), and 20 pages of music from published editions. The

database has versions of all pages at 300 and 600 dpi, with

eight bits of grayscale; we chose these parameters based on

information from Fujinaga and Riley (2002, plus personal

communication from both, July 2005). In most cases, we

scanned the pages ourselves; in a few, we used page image

files produced directly via notation programs or sent to us.

With this database, we planned to compare fully-automatic

and therefore objective (though necessarily very limited)

measures with semi-objective hand error counts, plus a

completely subjective “feel” evaluation.

We also considered documentation for the programs and

statements by expert users. We collected advice from

skilled, regular users of each program as to the optimal

settings of their parameters, among other things, intending

to rely on their advice for our experiments. However, it

took much longer than expected to locate experts on each

program and to get useful advice from them; as a result,

some of the settings we used probably were not ideal, at

least for our repertoire.

2.1.3 Automatic Comparison and Its Challenges

The fully-automatic measures were to be implemented via

approximate string matching of MusicXML files generated

from the OMR programs. With this automation, we

expected to be able to test a large amount of music.

However, the fully-automatic part ran into a series of

unexpected problems that delayed its implementation. For

example, with PhotoScore, comparing the MusicXML

generated to what the program displays in its built-in editor

often showed serious discrepancies. SharpEye did not have

this problem, but—since it has no “Print” command—we

opened its MusicXML files and printed them with Finale.

Finale sometimes misrepresented SharpEye's results,

causing much confusion until we realized was happening.

2.1.4 Hand Error Count

The hand count of errors, in three pages of artificial

examples and eight of published music, was relatively

coarse-grained in terms of error types. We distinguished

only seven types of errors, namely:

• Wrong pitch of note (even if due to extra or missing

accidentals)

• Wrong duration of note (even if due to extra or

missing augmentation dots)

• Misinterpretation (symbols for notes, notes for

symbols, misspelled text, slurs beginning/ending on

wrong notes, etc.)

• Missing note (not rest or grace note)

• Missing symbol other than notes (and accidentals and

augmentation dots)

• Extra symbol (other than accidentals and augmentation

dots)

• Gross misinterpretation (e.g., missing staff)

For consistency, we evolved a fairly complex set of

guidelines to be used in the process of scanning and

examining the music. All the hand counting was done by

the creators of the guidelines and nearly all by a single

person (Schindele), so we are confident our results have a

reasonably high degree of consistency.

2.1.5 “Feel” Evaluation

We also did a completely subjective “feel” evaluation of a

subset of the music used in the hand error count, partly as a

so-called reality check on the other results, and partly in

the hope that some unexpected insight would arise that

way. The eight subjects were music librarians and

graduate-student performers affiliated with a large

university music school. We gave them pairs of pages of

music—an original, and a version printed from the output

of each OMR program of a 300-dpi scan—to compare.

There were two originals: a monophonic page of Bach, and

a page of Mozart piano music. Thus, with the three OMR

versions of each original, each subject saw a total of six

pairs. The Mozart page is the same one used by Sapp

(2005); in fact, we used his scans of the page.

Based on results of the above tests, we also created and

tested another page of artificial examples, “Questionable

Symbols”, intended to highlight differences between the

programs: we will say more about this later.

2.1.6 Intellectual Property Rights and Publication Dates

An important consideration for any serious music-encoding

project, at least for academic purposes, is the intellectual-

property status of the publications to be encoded.

Obviously the safest approach, short of potentially

spending large amounts of time and money to clear the

rights, is to use only editions that are clearly in the public

domain. In general, to cover both Europe and the U.S., this

means that the composer must have been dead for more

than 70 years, and the edition must have been published

before 1923. This restriction is somewhat problematic

because music-engraving practice has changed gradually

over the years, and perhaps less gradually since the advent

of computer-set music, and the commercial OMR programs

are undoubtedly optimized for relatively-recent editions.

For this study, we used a mixture of editions from the

public-domain and non-public-domain periods, plus some

very recent computer-set examples.

3. Results

As a result of the difficulties with the fully-automatic

system, we ended up relying almost entirely on the hand

error counts, plus expert opinions and documentation. The

following results attempt to reveal the strengths and

weaknesses of each program, with an eye toward

integrating that data into a future MROMR system.

3.1 Hand Error Count Results

Results of the hand error counts may be seen in Figures 2

through 5. The tables and graphs demonstrate some of the

main points:

• With our test pages, the higher resolution did not

really help. This was as expected, given that none of

the test pages had very small staves. In fact, it had

little effect on SharpEye and SmartScore. PhotoScore

was much less predictable: sometimes it did better at

the higher resolution, sometimes worse.

• The programs generally had more trouble with more

complex and more crowded pages. This was also as

expected.

• Despite its generally good accuracy and its high rating

in the “feel” evaluation (see below), SharpEye made

many errors on note durations. Most of these are

because of its problems recognizing beams.

• By the guidelines of Byrd (2004), which seem

reasonable for high-quality encodings, all three

programs were well above acceptable limits in terms

of note pitch and duration for multiple pages. For

example, SharpEye had error rates for note duration

over 1% on several of our test pages, and over 4% on

one (see Figure 5). Byrd’s guidelines say 0.5% is the

highest acceptable rate. For note pitch, SharpEye had

an error rate over 1% for one test page and nearly 1%

for another (Figure 4), while Byrd’s limit for pitch

error is only 0.2%.

We also did a more detailed count of errors in a few

specific symbols other than notes: C clefs, text, hairpin

dynamics, pedal-down marks, and 1
st
 and 2

nd
 endings.

These are included in the Total Errors graphs, figures 2 and

3.

0

50

100

150

Test Page No. and Errors by Program

N
o
.
o
f
E
rr
o
rs

PhotoScore 31 22 27 22 25 68 40 93 24 36 81

SharpEye 4 2 17 7 8 55 22 55 17 42 25

SmartScore 9 5 17 14 20 48 13 76 7 31 114

TP

1

TP

2

TP

3

TP

7

TP

8

TP

12

TP

13

TP

15

TP

16

TP

19

TP

21

Figure 2. Total Errors at 300 dpi

0

20

40

60

80

100

120

140

Test Page No. and Errors by Program

N
o
.
o
f
E
rr
o
rs

PhotoScore 22 5 19 29 63 64 28 123 27 42 106

SharpEye 4 2 18 9 9 45 13 66 14 40 29

SmartScore 9 4 18 39 30 53 19 96 13 30 119

TP

1

TP

2

TP

3

TP

7

TP

8

TP

12

TP

13

TP

15

TP

16

TP

19

TP

21

 Figure 3. Total Errors at 600 dpi

0.0

5.0

10.0

15.0

20.0

25.0

Test Page No. and Percent Wrong Pitch by Program

P
e
rc
e
n
t
W
ro
n
g

PhotoScore 20.6 14.4 5.6 0.6 0.3 0.6 0.4 3.3 0.0 0.6 1.2 4.35

SharpEye 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.2 0.3 0.5 0.26

SmartScore 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.3 1.2 0.30

TP 1 TP 2 TP 3 TP 7 TP 8
TP

12

TP

13

TP

15

TP

16

TP

19

TP

21
Mean

 Figure 4. Note Pitch Errors at 300 dpi

0.0

1.0

2.0

3.0

4.0

5.0

Test Page No. and Percent Wrong Duration by Program

P
e
rc
e
n
t
W
ro
n
g

PhotoScore 0.0 0.0 0.0 1.3 1.6 3.4 3.1 1.6 0.0 2.5 0.5 1.27

SharpEye 0.0 0.0 0.0 1.3 0.3 4.0 2.7 3.8 0.0 3.8 1.0 1.53

SmartScore 0.0 0.0 0.0 1.6 0.3 0.3 0.0 2.4 0.0 1.6 2.0 0.74

TP 1 TP 2 TP 3 TP 7 TP 8
TP

12

TP

13

TP

15

TP

16

TP

19

TP

21
Mean

 Figure 5. Note Duration Errors at 300 dpi

3.2 “Feel” Evaluation Results

As a “reality check”, this confirmed the hand error count

results showing that all of the programs did worse on more

complex music, and, in general, that SharpEye was the

most accurate of the three programs. One surprise was that

the subjects considered SmartScore the least accurate, but

not by much: its rating and PhotoScore’s were very close.

The gap from SharpEye to PhotoScore was not great either,

but it was considerably larger.

The rating scale of 1 to 7 was presented to the subjects

as follows: 1 = very poor, 2 = poor, 3 = fair, 4 = fairly

good, 5 = good, 6 = very good, and 7 = excellent.

For OMR accuracy on this scale, SharpEye averaged 3.41

(halfway from “fair” to “fairly good”) across both pages;

SmartScore, 2.88 (a bit below “fair”), and PhotoScore,

3.03 (barely above “fair”); see Table 2. Several of the

subjects offered interesting comments, though no great

insights.

Table 2. Subjective OMR Accuracy

Test Page

8 (Bach)

Test Page

21 (Mozart)

Average

PhotoScore 3.94 2.13 3.03

SharpEye 4.44 2.38 3.41

SmartScore 3.88 1.88 2.88

3.3 Integrating Information from All Sources

We created and tested another page of artificial examples,

“Questionable Symbols”, intended to demonstrate

significant differences among the programs. This brief

example of musical notation, including fingering markings,

differently shaped noteheads, tremolo markings, and

several other common music notations, was created from

our testing and other information sources on the programs’

capabilities: their manuals, statements on the boxes they

came in, and comments by experts. Of course claims in the

manuals and especially on the boxes should be taken with

several grains of salt, and we did that. While this data is not

included in the figures in 3.1, it did provide some insight

about various quirks of the three programs.

3.4 Rules for MROMR

Based on our research, we developed a set of 17 possible

rules for an MROMR system. Here are four, stripped of

justification:

1. In general, SharpEye is the most accurate.

2. PhotoScore often misses C clefs, at least in one-staff

systems.

3. For text (excluding lyrics and standard dynamic-level

abbreviations like “pp”, “mf”, etc.), PhotoScore is the most

accurate.

4. SharpEye is the worst at recognizing beams, i.e., the

most likely to miss them completely.

These rules are, of course, far too vague to be used as

they stand, and they apply to only a very limited subset of

situations encountered in music notation; 50 or even 100

rules would be a more reasonable number. Both the

vagueness and the limited situations covered are direct

results of the fact that we inferred the rules by inspection of

just a few pages of music and OMR versions of those

pages, and from manually-generated statistics for the OMR

versions. Finding a sufficient number of truly useful rules

is not likely to happen without examining a much larger

amount of music—say, ten times the 15 or so pages in our

collection that we gave more than a passing glance, if not

more. This would be a very arduous task to perform

manually.

4. Conclusions: Prospects for Building a

Useful System

It seems clear that by far the best way of examining

enough music to infer an adequate set of rules would be

with automatic processes. This is especially true because

building MROMR on top of independent SROMR systems

involves a moving target. As the rules above suggest,

SharpEye was more accurate than the other programs on

most of the features we tested, so, with these systems, the

question reduces to one of whether it is practical to

improve on SharpEye’s results by much. One way in it

clearly is practical is for note durations. A more precise

statement of our rule 4 (above) is “when SharpEye finds no

beams but the other programs agree on a nonzero number

of beams, use the other programs”. This rule would cut

SharpEye’s note-duration errors by a factor of 3, i.e., to a

mean of 0.51%, improving its performance in this respect

from the worst of the three programs to by far the best.

However, since the conclusion of our study, major

upgrades to both PhotoScore and SmartScore have been

released. Other upgrades are very likely forthcoming, and,

of course, a new program might do well enough to be

useful. In any case, the moving-target aspect should be

considered in the design process. In particular, devoting

more effort to almost any aspect of evaluation is probably

worthwhile, as is a convenient knowledge representation,

i.e., way of expressing whatever rules one wants to

implement.

One factor we did not consider seriously enough at the

beginning of this study is the fact that all of the commercial

systems have built in “split-screen” editors to let users

correct the programs’ inevitable mistakes: these editors

show the OMR results aligned with the original scanned-in

image. As general-purpose music-notation editors, it is

doubtful they can compete with programs like Sibelius and

Finale, but for this purpose, being able to make corrections

in a view that makes it easy to compare the original image

and the OMR results is a huge advantage. The ideal way

might be to write a new split-screen editor; that would be a

major undertaking, though it could be extremely useful for

other purposes, e.g., an interactive music version-

comparing program. Otherwise, it could probably be done

by feeding “enhanced” output in some OMR program’s

internal format back into it. Documentation on SharpEye’s

format is available, so the problem should not be too

difficult.

4.1 Chances for Significant Gains and a Different

Kind of MROMR

Leaving aside the vagueness and limitations of our rules,

and the question of alignment before they could be applied,

more work will be needed to make it clear how much rules

like these could actually help. But it is clear that help is

needed, even with notes: as we have said, in our tests, all of

the programs repeatedly went well beyond reasonable

limits for error rates for note pitch and note duration.

This suggests using a very different MROMR method,

despite the fact that it could help only with note pitches and

durations: we refer to using MIDI files as a source of

information. This is particularly appealing because it

should be relatively easy to implement a system that uses a

MIDI file to correct output from an OMR program, and

because there are already collections like the Classical

Archives (www.classicalarchives.com), with its tens of

thousands of files potentially available at very low cost.

However, the word “potentially” is a big one; these files

are available for “personal use” for almost nothing, but the

price for our application might be very different. Besides,

many MIDI files are really records of performances, not

scores, so the number that would be useful for this purpose

is smaller—probably much smaller—than might appear.

4.2 Advancing the State of the Art

The results described above are encouraging enough that

we plan to continue working along the same lines towards

an implementation of a MROMR system in the near future.

To help advance the state of the art of OMR, we also plan

to make our test collection (the files of scanning images,

groundtruth files, and OMR-program output files) and

findings available to the community in an informal way.

For those interested in learning more about our work, an

extended version of this report is available, together with

several supporting documents (exact results of the hand

error counts, “Questionable Symbols”, the full list of

possible rules, etc.) on the World Wide Web at

http://www.informatics.indiana.edu/donbyrd/MROMRPap.

5. Acknowledgements

It is a pleasure to acknowledge the assistance of Michael

Droettboom and Ichiro Fujinaga (information on OMR

technology, especially Gamut/Gamera); Bill Clemmons,

Kelly Demoline, Andy Glick, and Craig Sapp (advice as

experienced users of the programs we tested); Graham

Jones (SharpEye); Don Anthony, Andy Glick, Craig Sapp,

and Eleanor Selfridge-Field (obtaining test data); Tim

Crawford and Geraint Wiggins (project planning, among

other things); Anastasiya Chagrova (the automatic-

comparison program, etc.); and, Don Anthony, Mary

Wallace Davidson, Phil Ponella, Jenn Riley, and Ryan

Scherle (advice and/or support of various kinds).

This project was made possible by the support of the

Andrew W. Mellon Foundation; we are particularly

grateful to Suzanne Lodato and Don Waters of the

Foundation for their interest in our work.

References

[1] Bellini, P., Bruno, I, and Nesi, P. (2004) Assessing Optical

Music Recognition Tools. Available at

http://www.interactiveMUSICNETWORK.org/wg_imaging

/upload/assessingopticalmusicrecognition_v1.0.doc

[2] Byrd, Donald (2004). Variations2 Guidelines For Encoded

Score Quality. Available at

http://variations2.indiana.edu/system_design.html

[3] Byrd, Donald, and Schindele, Megan (2006). MROMR

(Multiple-Recognizer Optical Music Recognition) Web

page. http://mypage.iu.edu/~donbyrd/MROMRPaper

[4] Droettboom, Michael, & Fujinaga, Ichiro (2004). Micro-

level groundtruthing environment for OMR. In

Proceedings of the 5th International Conference on Music

Information Retrieval (ISMIR 2004), Barcelona, Spain, pp.

497–500.

[5] Fujinaga, Ichiro, & Riley, Jenn (2002). Digital Image

Capture of Musical Scores. In Proceedings of the 3rd

International Symposium on Music Information Retrieval

(ISMIR 2002), pp. 261–262.

[6] Kilian, Jürgen, & Hoos, Holger (2004). MusicBLAST—

Gapped Sequence Alignment for MIR. In Proceedings of

the 5th International Conference on Music Information

Retrieval (ISMIR 2004), pp. 38–41.

[7] MacMillan, Karl, Droettboom, Michael, & Fujinaga, Ichiro

(2002). Gamera: Optical music recognition in a new shell.

In Proceedings of the International Computer Music

Conference, pp. 482–485.

[8] Ng, Kia C., & Jones, A. (2003). A Quick-Test for Optical

Music Recognition Systems. 2nd MUSICNETWORK

Open Workshop, Workshop on Optical Music Recognition

System, Leeds, September 2003.

[9] Ng, Kia, et al. (2004) CIMS: Coding Images of Music

Sheets. Interactive MusicNetwork working paper.

Available at

www.interactivemusicnetwork.org/documenti/view_docum

ent.php?file_id=1194

[10] Prime Recognition (2005).

http://www.primerecognition.com

[11] Sapp, Craig (2005). SharpEye Example: Mozart Piano

Sonata No. 13 in B-flat major, K 333.

http://craig.sapp.org/omr/sharpeye/mozson13/

[12] Selfridge-Field, Eleanor, Carter, Nicholas, et al. (1994).

Optical Recognition: A Survey of Current Work; An

Interactive System; Recognition Problems; The Issue of

Practicality. In Hewlett, W., & Selfridge-Field, E. (Eds.),

(Computing in Musicology, vol. 9, pp. 107–166. Menlo

Park, California: Center for Computer-Assisted Research in

the Humanities (CCARH).

