Lilypond for pyScore: Approaching a universal translator for music notation

Stephen Sinclair
Schulich School of Music
McGill University
Montreal, Quebec
sinclair@music.mcgill.ca

Abstract

Several languages for music notation have been defined
in recent years. pyScore, a framework for translating
between notation formats, and new module for it which can
generate input for the LilyPond music engraving system are
described. This shows the potential for developing pyScore
into a “universal translator” for musical scores.

Keywords: Notation, score, engraving, translation,
representation.

1. Introduction

Recent years have seen a large increase in the use
of computers for representing musical notation. This
is due to an increased interest in digital archiving of
musical scores, computer typesetting, score editing, optical
music recognition, web-based distribution of music, and
interchange between the variety of available software
programs.

Two forerunners have most recently been touted as
solutions for distribution and interchange. These are
Recordare’s MusicXML [3], an “Internet-friendly” XML-
based format, and GUIDO, a “representationally adequate”
and “human readable” text format [4]. They are both
designed and built on previous work, including, but not
limited to, the binary NIFF format, SMDL, and Humdrum’s
**kern [5].

Another contender is a free and open-source music
engraving system called LilyPond [6]. Its input format is
intended more as a description of visual layout than for data
interchange, but due to the professional quality of its output,
some have begun to use its input format to store musical
data.

One reason for the encouraging support it has obtained
is that its input format is similar in many ways to
the popular IATEX document typesetting software. The
grammar is highly flexible and quite easy to read and
write. For example, musical expressions can be defined
as “commands,’ to be later be recalled in one or more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

(© 2006 University of Victoria

Michael Droettboom
formerly of Johns Hopkins University
3400 North Charles Street
Baltimore, Maryland, USA 21218
mike@droettboom.com

Ichiro Fujinaga
Schulich School of Music
McGill University
Montreal, Quebec
ich@music.mcgill.ca

contexts. Different instrument voices can then be defined
separately and specified in a more specific layout context
later in the document. Also, any variable used for control
of its Scheme-based layout system can be overridden from
within the input script. Finally, many special cases are
supported for instruments with exceptional notation, such
as bagpipes or percussion, as well as ancient notation and
special constructs for contemporary music.

Because it is free and very extensible, it can be used as a
good solution for displaying results from MIR transactions.
An easy way to generate its input format for automated
systems would be highly desirable. In this paper, we discuss
a software framework for translating musical scores. In
addition to its previous support for MusicXML and GUIDO,
we have created a new module for generating input to
LilyPond.

2. Translating notation with pyScore

Because of the multiplicity of formats that exist, it is
impossible to expect every software package to know how
to parse them all. Instead, it is important to be able to
independently translate foreign formats to familiar ones,
bridging otherwise incompatible programs. Additionally,
storing musical information in open formats ensures data
longevity. Translation can allow for this, while ensuring
compatibility with a wide array of software tools.

While many programs exist for specific translations
between particular formats, a more global approach to this
problem is taken by pyScore, a framework developed in the
Python programming language [1]. Currently, it can work
with MusicXML and GUIDO. It is able to read them into
internal tree structures which can then be translated from
one to the other, or into MidiXML, which can in turn output
MIDI data as a file or a stream. It can also render GUIDO
to image files by calling the online NoteServer.

The framework is structured so that it is quite simple to
add support for new formats. When a module is added,
pyScore is able to find a path from whatever input format is
given to the new module. Thus, given the ability to translate
a GUIDO tree into a LilyPond tree, it is automatically able
to also perform the internal conversion from MusicXML
to GUIDO if necessary. This feature, in addition to the
clear and modular programming framework, and combined
with the advantages of using Python (such as cross-platform

LilyPond File

GUIDO Image

Figure 1. Conversion graph for pyScore, with LilyPond
module added.

compatibility, and readability of the source), make pyScore
a particularly well-adapted platform for building a universal
score converter.

We have created a LilyPond module for pyScore. The
new conversion graph is shown in Figure 1. Currently it
supports conversion fo LilyPond. It can handle the complete
definition of the “Basic” subset of GUIDO, meaning that
it supports most important musical features, but currently
lacks much of the layout information that is possible to
specify using GUIDO’s “Advanced” counterpart.

3. Representational differences

There are inevitably some choices that must be made when
formalizing an abstract concept like music. Some of these
choices are human considerations, to increase clarity and
to ease manual editing, while others make fundamental
differences in how the computer must make assumptions
or numerically handle information. Different systems will
invariably choose different ways of encoding structural
relationships that exist within music at every level of
abstraction [2].

As a short example, consider the seemingly simple
construct of a tuplet. In a triplet, each note has a duration
of % of its normal duration. GUIDO represents this by
specifying each note with its absolute duration, multiplying
by a fraction if necessary:

[cx1/3 c*1/3 c*1/3] % Half-notes, 1 bar

[cx1/6 c*1/6 c*1/6] % Quarter-notes, % bars

This is representationally simple, but does not explicitly
define the relationship between the notes. In contrast,
LilyPond chooses to specify normal durations, and multiply
the group of notes by a fraction:

% Half-notes, 1 bar

% Quarter-notes, 1 pars

\times 2/3 { ¢’'2 ¢’ ¢’ }
} P

\times 2/3 { c’4 ¢’ ¢’

This difference implies that when reading GUIDO, the
translator must detect groups of notes to be considered
tuplets, since they are not already grouped in the input file.

This is done by checking each note duration to see if it is an
even power of two, and if not, collecting them until the total
duration of the group matches this criteria.

Design choices such as these make it often impossible
to derive a universal solution for translating symbolic
information. pyScore approaches this by performing
specific translations from one language to another in series,
rather than trying to define a one-size-fits-all internal
representation. While long chains of translations may be
lossier than necessary, this means individual translations can
be optimized to reduce loss of information.

4. Conclusion

pyScore is a useful framework for building a notation
translator. By using it to convert from GUIDO to LilyPond,
we were able to take advantage of a ready-made GUIDO
parser. As a bonus, the software is automatically able
to translate MusicXML into LilyPond, by discovering the
appropriate intermediate conversion. This allowed us to
concentrate solely on LilyPond’s representation, without
having to track differences between three grammars.

Future work will support more of the Advanced GUIDO
features. Additionally, a parser for the LilyPond format
should be added, to enable conversion from LilyPond. This
may present a more difficult task, because of the flexibility
of the LilyPond language, and its escape mechanism for the
software’s internal Scheme interpreter.

It would be beneficial to add yet more format support
to pyScore, to eventually achieve an open-source “universal
translator” for music.

5. Acknowledgments

We are grateful to National Science Foundation, Institute for
Museum and Library Services, the Lester S. Levy Family,
and Canadian Foundation for Innovation for their financial
support.

References

[1] pyScore [Software], 2006 Apr 24; available from:
http://pyscore.sf.net/.

[2] R. Dannenberg, ‘“Music representation: Issues, techniques,
and systems,” in Computer Music Journal, vol. 17, no. 3, pp.
20-30, 1993.

[3] M. Good and G. Actor, “Using MusicXML for
File Interchange,” in Proceedings Third International
Conference on WEB Delivering of Music, 2003, p. 153.

[4] H. Hoos, K. Hamel, and K. Renz, “Using Advanced GUIDO
as a Notation Interchange Format,” in Proceedings of the
International Computer Music Conference, 1999.

[5] D. Huron, “Music information processing using the
Humdrum toolkit: Concepts, examples, and lessons,” in
Computer Music Journal, vol. 26, no. 2, pp. 11-26, 2002.

[6] H.-W. Nienhuys and J. Nieuwenhuizen, “Lilypond, a system
for automated music engraving,” in Proceedings of the XIV
Colloguium on Musical Informatics, 2003.

