
An Implementation of a Simple Playlist Generator
Based on Audio Similarity Measures and User Feedback

Elias Pampalk*
National Institute of Advanced

Industrial Science and Technology (AIST)
IT, AIST, 1-1-1 Umezono

Tsukuba, Ibaraki 305-8568, Japan

Martin Gasser
Austrian Research Insitute

for Artificial Intelligence (OFAI)
Freyung 6/6

A-1010 Vienna, Austria

Abstract
This paper presents an implementation of a simple playlist
generator. An audio-based music similarity measure and
simple heuristics are used to create playlists given minimum
user input. The ultimate goal of this work is to conduct a
field study, i.e., to run the system on the users’ personal col-
lection and study the usage behavior over a longer period of
time. The functions include, for example, allowing the user
to control the variance of the playlists in terms of how often
the same song or songs from the same artists are repeated.

1. Introduction
Mobile audio players can store personal music collections
of 20,000 and more tracks. However, the value of such large
collections is limited by how easy it is, for example, to cre-
ate an interesting playlist. In the MIR research community
several approaches have been presented addressing this (see
e.g. [1, 2, 3, 4, 5]).

A number of commercial systems exist which create in-
teresting playlists. For example, iTunes allows the user to
create “smart playlists” which use simple rules based on
metadata and song ratings. Last.fm uses collaborative fil-
tering to create playlists of similar songs and pandora.com
uses manually annotated data. In contrast to these systems
our implementation does not require any additional infor-
mation other than the audio signals. In particular, it uses
computational models of audio-based music similarity.

In this paper we present an implementation of a simple
playlist generator (SPG) based on the work presented in [6].
The idea is to use simple heuristics to constantly improve
playlists by adjusting them to user feedback. The mini-
mum interaction scenario is that the user selects one song
and presses the play button. SPG would respond by playing
similar songs. If the user rates one or more of these songs

*) Part of this work was done while the author was working at the Austrian
Research Institute for Artificial Intelligence (OFAI).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

this information will be used to improve future recommen-
dations.

Our implementation serves two purposes. First, it has
helped clarify the requirements of a simple playlist gener-
ator. Including, for example, the requirements of adjusting
the variance in the playlists mentioned below. Second, it al-
lows us to conduct user studies where the users can use the
tool on their own music at home. In particular, our goal is
to ask the users to keep daily notes of their experiences, and
follow up these descriptions with structured interviews.

2. Functionality
SPG uses an audio-based similarity measure, feedback pro-
vided by the user, and simple heuristics. These heuristics
search for songs similar to preferred songs and avoid songs
similar to rejected songs. The usage scenario is that the
users want to quickly create a playlist from their own music
collection.

The core functions of SPG are:
A. Very similar to pandora.com the users can manage their

own radio stations. (However, in this case a radio station
only plays songs from the user’s collection.) Each radio
station is defined by favorite and banned songs or artists.
Depending on the ratings the users make they can define
a radiostation to play what they consider to be, for ex-
ample, “wake-up music” or “Saturday day night music”.
The minimum requirement to define a new radio station
is to select one favorite song or artist. All the user’s rat-
ings can be easily accessed and modified any time.

B. A key issue is to control the variance of the songs played
on the radio station. If there is too little variance the
same songs will be repeated frequently, if there is too
much variance the songs on the playlist might not be
similar to each other. The user can control the variance
by setting the frequency with which songs and artists
are repeated. For each there are three options: rarely,
sometimes, and frequently.

C. In contrast to the work presented in [6] skipped songs,
and songs which are played, are not automatically rated.
Instead the user can easily adjust the rating of each song
in the playlist or in the edit radio station panel.



Figure 1. Screenshot of SPG running on MacOS X.

3. User Interface
Figure 1 shows a screenshot of SPG (which is implemented
in Java). The list on the right side is the current playlist
which is generated by the selected radio station. The user
can rate songs by clicking on the icons to the right of each
song. (This only has an impact on the current radio station.)
The playlist is updated by clicking on “update playlist”. On
the left side (top to bottom) are the radio station selector,
audio player controls, and controls to adjust the variance
of the playlist. The export button underneath the playlist
selector allows the users to export the current playlist to an
M3U file (and thus allows them to use their preferred audio
player).

The controls to adjust the variance allow the user to set
the number of times artists and songs are repeated to either
“rarely”, “sometimes”, or “frequently”. If, for example, the
user chooses to repeat songs rarely then SPG would rather
play a not so similar song instead of playing a previously
played song again. If the user chooses to repeat artists fre-
quently then SPG (if appropiate) might play a number of
songs by the same artist within an hour. The user can only
set the repetition frequency of artists to the maximum level
the user chose for the songs (e.g. repeating songs frequently,
but artists rarely is not a valid setting).

Not shown is the edit radio station panel where the users
can view their ratings and change the name of the radio sta-
tion. One list is shown for all rated songs, and one list for all
rated artists. New items can be added using a simple search
function. Ratings in the lists can be changed in the same
way that they are changed in the playlist.

4. Techniques
We use the audio-based music similarity measure described
as G1C in [7]. It combines spectral similarity [8] with infor-
mation from fluctuation patterns [9, 10]. To create playlists
we use the heuristic D described in [6]. Basically, songs

which are close to any of the user’s favorite songs, and far
away from banned songs are recommended. If the user dis-
likes or likes an artist then all songs from this artist (unless
they are rated individually) are treated as favorite or banned
songs.

5. Conclusions
In this paper we presented a Java implementation of a simple
playlist generator. The player implements minimum func-
tionality to support evaluation of MIR technologies (in par-
ticular audio-based music similarity measures and playlist
generation heuristics) in everyday music consumption. The
functionality includes management of radio stations and sim-
ple control of the variance in the play-lists. Future work in-
cludes conducting a user study where users install the tool
on their private collections.

6. Acknowledgments
This work was supported by the EU project FP6-507142
(SIMAC) and the WWTF project Interfaces to Music (I2M).

References

[1] J.-J. Aucouturier and F. Pachet, “Scaling up music playlist
generation,” in Proc. of the IEEE Intl. Conf. on Multimedia
Expo, 2002.

[2] S. Pauws and B. Eggen, “PATS: Realization and User Eval-
uation of an Automatic Playlist Generator,” in Proc. of the
ISMIR Intl. Conf. on Music Information Retrieval, 2002.

[3] T. Pohle, E. Pampalk, and G. Widmer, “Generating
Similarity-Based Playlists Using Traveling Salesman Algo-
rithms,” in Proc. of the Intl. Conf. on Digital Audio Effects,
2005.

[4] R. van Gulik and F. Vignoli, “Visual Playlist Generation on
the Artist Map,” in Proc. of the ISMIR Intl. Conf. on Music
Information Retrieval, 2005.

[5] M. Goto and T. Goto, “Musicream: New Music Playback In-
terface for Streaming, Sticking, Sorting, and Recalling Mu-
sical Pieces,” in Proc. of the ISMIR Intl. Conf. on Music In-
formation Retrieval, 2005.

[6] E. Pampalk, T. Pohle, and G. Widmer, “Dynamic Playlist
Generation Based on Skipping Behaviour,” in Proc. of the
ISMIR Intl. Conf. on Music Information Retrieval, 2005.

[7] E. Pampalk, “Computational Models of Music Similarity
and their Application in Music Information Retrieval,” Ph.D.
dissertation, Vienna University of Technology, 2006.

[8] M. Mandel and D. Ellis, “Song-Level Features and Support
Vector Machines for Music Classification,” in Proc. of the
ISMIR Intl. Conf. on Music Information Retrieval, 2005.

[9] E. Pampalk, “Islands of Music: Analysis, Organization, and
Visualization of Music Archives,” Master’s thesis, Vienna
University of Technology, 2001.

[10] E. Pampalk, A. Flexer, and G. Widmer, “Improvements of
Audio-Based Music Similarity and Genre Classification,” in
Proc. of the ISMIR Intl. Conf. on Music Information Re-
trieval, 2005.


