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Abstract 
This paper presents two models of audio key finding: a 
template based correlational model and a template based 
model that uses a low-dimensional tonal representation. 
The first model uses a confidence weighted correlation to 
find the most probable key. The second model is distance 
based and employs dimensionality reduction to the tonal 
representation before generating a key estimate. 
Experiments to determine the dependence of key finding 
accuracy on dimensionality are presented. Results show 
that low dimensional representations, compared to 
commonly used 12 dimensions, may be utilized for key 
finding without sacrificing accuracy. The first model’s 
independently verified performance enabled it to be used 
as a benchmark for evaluation of the second model. Key 
finding accuracies for both models are given together with 
detailed results of the second model’s performance as a 
function of the number of dimensions used.   

Keywords: Key finding, chroma based representations, 
dimensionality reduction. 

1. Introduction 
Audio key finding is the problem of estimating the key of 
a musical piece in terms of the most stable pitch and the 
mode of the musical scale used. Finding the key of a piece 
using general polyphonic audio as input is one of the 
important problems in content analysis for music 
information retrieval. A robust solution to this problem is 
essential to higher levels of processing and analysis, and 
therefore, study of models that attempt to solve this 
problem is of great interest. For example, in tonal music, 
most high level music analyses require the determination 
of key as the first step. Other applications include musical 
style modeling, modulation detection and similarity 
modeling by tonal evolution.     

This paper describes two key finding models and 
presents a comparative evaluation of the two. Both models 
work on recorded polyphonic audio input and produce a 
key estimate for each file. They are designed to operate on 

short fragments of audio taken from the beginnings of 
musical works. The first model participated in the Music 
Information Retrieval Evaluation Exchange in 2005 
(MIREX 2005). This model scored the best composite 
score among the 7 participating models on the unreleased 
audio data set. Therefore, this model serves as a good 
reference to evaluate the second model. The second model 
explores the effect of dimensionality of tonal 
representation in the context of the key finding problem.  

The remainder of the paper is organized as follows: 
Section 2 refers to related work. Section 3 describes the 
first model in detail and summarizes the results of the 
independent evaluation carried out in MIREX 2005. 
Section 4 describes the second model. Evaluation results 
for both models are given in Section 5. Section 6 
concludes the paper.  

2. Related Work 
Many audio key finding models use a chroma based 

representation. A chroma based representation is a 
compact form of spectral representation obtained by a 
many-to-one mapping from the short-time spectrum of 
audio. The most commonly used mapping is the Pitch 
Class Profile (PCP) originally proposed by Fujishima [1] 
for recognizing chords. Izmirli [2] compared pure spectral 
and chroma representations for key finding and reported 
significantly higher accuracy with chroma based 
representations weighted by pitch distribution profiles. 
Gomez [3] used a chroma based representation called the 
Harmonic Pitch Class Profile, which used the peaks in the 
spectrum. Cabral et al. [4] studied the effects of weighting 
the contribution of FFT bins by their distance to the closest 
note. Pauws [5] used a chromagram that models chroma as 
a decaying spectral impulse train and arrived at a 
collection of chroma likelihoods in a single octave. 

Models for key finding and others that use some form 
of tonal description have utilized classification and 
machine learning techniques to learn from existing data 
and to achieve higher rates of accuracy. Purwins et al. [6] 
used various classifiers to classify composers using 
Constant Q profiles and reported on a method for finding 
the degree of major/minor ambiguity. Gόmez and Herrera 
[7] studied machine learning methods for key finding 
using the Harmonic Pitch Class Profile. Izmirli [8] studied 
the dimensionality reduction of spectra for major and 
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minor pitch sets. Sheh and Ellis [9] used a chroma based 
representation together with Hidden Markov Models for 
finding chord boundaries. Chai and Vercoe [10] proposed 
an HMM-based model to segment musical pieces 
according to points of key change.  

In general, regarding the solutions to the audio key 
finding problem, many models have been reported in the 
literature (e.g.[2] [3] [5][11] [12] [13][14].) 

3. Model I 
This section describes the key finding model that 
participated in MIREX 2005. The model is designed with 
the following assumptions: The input to the algorithm is a 
sound file that contains the musical work for which the key 
is to be estimated. The algorithm analyzes fragments of 
polyphonic audio taken from the beginnings of musical 
works. It is assumed that pieces input to this algorithm 
start in the same key as the one designated by the 
composer. The output consists of a single key estimate that 
is one of 24 possibilities – 12 for major and 12 for minor. 
The model has three stages: chroma template calculation 
using monophonic instrument sounds, chroma summary 
calculation from the input audio file and overall key 
estimation using the chroma templates and chroma 
summary information. Every file is processed 
independently – there is no learning across files. 

In the first stage, templates are formed using 
monophonic instrument sounds spanning several octaves.  
For this, initially, average spectra are calculated for each 
monophonic note. Next, spectral templates are formed as a 
weighted sum of the average spectra obtained from 
individual instrument sounds. Two types of weighting are 
performed. The first is done according to a pitch 
distribution profile. In general, the profile can be chosen to 
be one of Krumhansl’s probe tone ratings [15], 
Temperley’s profiles [16], flat diatonic profiles or 
combinations of these. The second is a weighting that is a 
function of the contributing note’s (MIDI pitch) value. The 
first weighting is used to model the pitch class distribution 
and the second weighting is used to account for the 
registral distribution of notes. The resulting spectral 
templates are then collapsed into chroma templates. This 
process comprises a many-to-one frequency mapping for 
each chroma in order to form a 12-element chroma 
template. As a result 24 chroma templates are formed. 
These templates act as prototypes of chroma vectors for 
major and minor keys. It should be mentioned that the 12 
element chroma representation is most common but other 
divisions are also possible.   

In the second stage, spectra are calculated from the 
input audio file and then mapped to chroma vectors. A 
summary chroma vector is obtained by averaging the 
chroma vectors in a window of fixed length. Windows of 
different lengths are used to obtain a range of localities. 
All windows start from the beginning of the piece and 

therefore longer windows contain information in the 
shorter windows as well as the new information in the later 
parts of their span. The lengths of the windows start from a 
single frame and progressively increase up to a maximum 
time into the piece.  

The key is estimated in the third stage using the 
precalculated chroma templates and the summary chroma 
vectors calculated from the input file. For each window, 
correlation coefficients are calculated between the 
summary chroma vector and all chroma templates. The 
template index with the highest correlation is regarded as 
the estimate of the key for that window. In order to find 
the most prevalent key estimate for a piece, the confidence 
of the estimate for each window is also found. Next, the 
total confidence over all windows is calculated for each 
plausible key. The key with the maximum total confidence 
is reported as the overall key estimate. 

3.1 Template Calculation 
Templates act as prototypes to which information obtained 
from the audio input is compared. The purpose of 
constructing templates is to have an ideal set of reference 
chroma patterns for all possible keys. This section outlines 
the calculation of templates and the following section 
describes how the input audio is processed in order to 
perform the key estimation.  

3.1.1 Instrument Sounds 
In this algorithm, templates are obtained from recordings 
of real instruments, but, they could equivalently be 
obtained from synthetically generated harmonic spectra. A 
collection of sound files is used. Each file contains a single 
note and is appropriately labelled to reflect its note 
content. For this algorithm, piano sounds from the 
University of Iowa Musical Instrument Samples online 
database have been used. The sounds were converted to 
mono from stereo and down sampled to a sampling rate of 
11025 Hz. The frequency analysis is carried out using 50% 
overlapping 4096-point FFTs with Hann windows. The 
analysis frequency range for this algorithm is fixed at 55 
Hz on the low end and 2000 Hz on the high end. In 
general, depending on the spectral content of the input a 
wider frequency range may be used. 

3.1.2 Pitch Distribution Profiles 
Pitch distribution profiles may be used to represent tonal 
hierarchies in music. Krumhansl [15] suggested that tonal 
hierarchies for Western tonal music could be represented 
by probe tone profiles. Her method of key finding is based 
on the assumption that a pattern matching mechanism 
between the tonal hierarchies and the distribution of 
pitches in a musical piece models the way listeners arrive 
at a sense of key. Although she formulated this key finding 
method on symbolic data, many key finding models, 
symbolic and audio, rely on this assumption and several 
extensions have been proposed. In one such extension, 



 
 

beside other additions, Temperley [16] proposed a 
modification to this pitch distribution profile. We utilize 
this profile in combination with a diatonic profile as this 
combination results in the best performance of the current 
model. The diatonic profile can be viewed as a flat profile 
which responds to presence or absence of pitches but is not 
sensitive to the relative importance of pitches. Application 
of this profile alone would resemble earlier approaches to 
key finding in which pattern matching approaches had 
been used. Figure 1 shows the normalized composite 
profile used in this model together with Temperley’s and 
the diatonic profiles. 

Profiles are incorporated into the calculation of 
templates to approximate the distribution of pitches in the 
spectrum and the resulting chroma representation. The 
base profile for a reference key (A in this case) has 12 
elements, represents weights of individual chroma values 
and is used to model pitch distribution for that key. Given 
that this distribution is invariant under transposition, the 
profiles for all other keys are obtained by rotating this base 
profile. 
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Figure 1. Pitch distribution profiles used in Model I: Diatonic 

major (DM), Temperley major (TM), composite major (PM) 
(top); harmonic minor (Dm), Temperley minor (Tm), and 

composite minor (Pm) (bottom).  

3.2 Chroma Templates 
The average spectrum of an individual monophonic sound 
with index i, Xi, is computed by averaging the spectra, 
obtained from windows that have significant energy, over 
the duration of the sound. The average spectrum is then 
scaled by its mean value. Here, i=0 refers to the note A in 
the lowest octave, i=1 refers to Bb a semitone higher etc. R 
is the total number of notes within the instrument’s pitch 
range used in the calculation of the templates. For this 
algorithm R is chosen to be 51. The lowest note is A1 and 
the highest is B5. 

Templates are obtained by weighted sums of the 
average spectra calculated for individual notes. A template 
for a certain scale type and chroma value is the sum of Xi 
weighted by the profile element for the corresponding 
chroma and by the second weighting that is a function of 

the note index (i). A template is calculated for each scale 
type and chroma pair resulting in a total of 24 templates as 
given in Equation (1). The first 12 are major, starting from 
reference chroma ‘A’, and last 12 are minor.   
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Pe(k) is the profile weight as shown in Figure 1, where e 
denotes the scale type (M:major or m:minor) and k denotes 
the chroma. In this work, the profile is given by the 
elementwise product of the diatonic and Temperley 
profiles: Pe(k)=De(k)Te(k). f(i) is the secondary weighting 
function that accounts for the registral distribution of 
notes. Here, it is chosen to be a simple decreasing 
function: f(i)= 1-0.14i0.5. Ψ is a function that maps the 
spectrum into chroma bins. The mapping is performed by 
dividing the analysis frequency range into 1/12th octave 
regions with respect to the reference A=440 Hz. Each 
chroma element in the template is found by a summation 
of the magnitudes of the FFT bins over all regions that 
have the same chroma value. 

3.3 Summary Calculation 
Once the profiles are calculated they become part of the 
model and are used to determine the key estimates for all 
audio input. i.e. one set of templates is used for all audio 
files in a dataset. The second stage of the method involves 
calculation of chroma summary vectors.  

Initially, a chroma vector is calculated for each FFT 
frame from the audio input with the same analysis 
parameters used for calculating the templates. Next, the 
actual starting point of the music is found by comparing 
the signal energy to a threshold. This frame is made the 
pivot point for the remainder of the analysis. A summary 
chroma vector is defined to be the average of individual 
chroma vectors within a window of given length. All 
windows start from the pivot frame with the first window 
containing a single frame. Window length is progressively 
increased in succeeding windows until the maximum 
analysis duration is reached. The maximum length of the 
audio to be analyzed is chosen to be approximately 30 
seconds in this particular implementation. This results in a 
sequence of summary chroma vectors where each 
summary vector corresponds to a window of specific 
length. 

3.4 Estimation of Key 
The key estimate for an input sound file is determined 
from the individual key estimates corresponding to the 



 
 

various size windows and their associated confidence 
values. These two entities are determined as follows: For 
each window a key estimate is produced by computing 
correlation coefficients between the summary chroma 
vector and the 24 precalculated chroma templates and then 
picking the one with the maximum value. The confidence 
for an individual key estimate is given by the difference 
between the highest and second highest correlation value 
divided by the highest value. At this point each window 
has a key estimate and an associated confidence value. 
Finally, the total confidence for each plausible key is 
found by summing confidence values over all windows. A 
key is plausible if it has appeared at least once as an 
individual estimate in one of the windows. The key with 
the maximum total confidence is selected as the key 
estimate.  

3.5 MIREX Evaluation 
MIREX 2005 provided the opportunity for empirical 
evaluation and comparison of algorithms in many areas 
related to music information retrieval. Algorithms 
participating in MIREX 2005 were submitted directly to 
the MIREX committee and the evaluations were run 
without intervention of the participants. The results of the 
MIREX 2005 evaluations were reported for all 
participating algorithms [17]. Beside other contests that 
took place during the exchange, a closely related category 
was symbolic key finding. The MIREX evaluation 
framework for audio key finding and symbolic key finding 
used the same dataset containing 1252 pieces. The 
symbolic key finding algorithms used data directly from 
MIDI note files whereas sound files were synthesized from 
the same set of MIDI files for use in audio key finding. 
This enabled, for the first time, a performance comparison 
of symbolic key finding and audio key finding methods. It 
should be stressed, however, that because the audio 
material in the dataset was synthesized, the results of the 
audio key finding cannot be generalized to actual audio 
recordings containing the same pieces. 

Prior to evaluation, a test set of 96 pieces were made 
available to the participants for testing and calibrating their 
algorithms. The performance evaluation criteria were 
established before the actual evaluation started. According 
to these the performance of an algorithm was determined 
by the percentage of correctly identified keys as well as 
closely related keys. In order not to severely penalize 
closely related key estimates the following fractional 
allocations were used: correct key, 1 point; perfect fifth, 
0.5; relative major/minor, 0.3; parallel major/minor, 0.2 
points. This was determined by the proposers of the 
contest at an early stage of the audio key finding contest 
proposal. 

The audio dataset was reported to have two versions. 
Different synthesizers were used to generate the different 
versions - Winamp and Timidity. A percentage score was 

calculated for each version of the dataset taking into 
account the fractional allocations mentioned above. The 
composite percentage score was the average performance 
of the algorithms on the two datasets. 

The algorithm explained in this paper performed as 
follows: Using the Winamp database, 1086 pieces were 
estimated correctly. Furthermore, an additional 36 
estimates were perfect fifths of the correct key, 38 were 
relative major/minors and 17 were parallel major/minors. 
75 of the estimated keys were considered unrelated. The 
percentage score for this database was 89.4 percent. Using 
the Timidity database, the algorithm found the correct key 
for 1089 pieces. For this database, an additional 42 
estimates were perfect fifths of the correct key, 31 were 
relative major/minors and 18 were parallel major/minors. 
72 of the estimated keys were considered unrelated. The 
percentage score for this database was 89.7 percent. The 
resulting composite percentage score was 89.55 percent. 

This algorithm performed slightly better than the other 
algorithms in this evaluation exchange for the given 
dataset. The performances of the 7 participating algorithms 
ranged from 79.1 percent to 89.55 percent in their 
composite percentage scores. 

4. Model II 
This section describes a second model for key finding that 
operates on a representation with fewer dimensions 
compared to Model I. The motivation behind this is to find 
the optimal number of dimensions for a specific problem -
key finding in this case - rather than to decrease the 
computational cost. Dimensionality reduction is performed 
on the data prior to a distance based calculation to 
determine the most probable key. The model takes in a 
parameter indicating the number of dimensions to be used 
in the process of key finding. 

4.1 Dimensionality Reduction 
Chroma based representations have been used extensively 
with great success in models that deal with tonal content 
analyses such as chord recognition, major/minor key 
detection and key finding. These chroma based 
representations are obtained by a fairly straightforward 
many-to-one mapping from the spectrum to a low-
dimensional vector. This vector often has 12 elements - 
hence the name chroma mapping or chromagram - 
although the same calculation can be carried out for 
different vector sizes. Performing this mapping from many 
bins in the FFT to 12 bins can be viewed as a significant 
reduction in dimensionality but the question remains as to 
whether further reduction is possible. We explore the 
relationship between the number of dimensions used in the 
representation of tonal content and recognition 
performance in key finding using Model II.  

   In order to find the relationship between the number 
of dimensions and key finding accuracy, one could start 



 
 

from a spectral representation and perform dimensionality 
reduction. This leads to a compact tonal representation by 
preserving the cognitive distances between keys. Izmirli 
[8] demonstrated that cyclic distance patterns can be 
obtained through dimensionality reduction of raw spectral 
data pertaining to diatonic sets. In [2] a comparison of 
spectral and chroma representations of tonal content 
showed that chroma representations were more effective in 
correlation based key recognition. Therefore, we have 
chosen to start with the 12-dimensional PCP chroma 
representation and explore the effects of dimensionality 
reduction on the performance of key finding. 

This model uses Principle Components Analysis (PCA) 
for performing dimensionality reduction. In PCA, the 
eigenvectors and eigenvalues of the covariance matrix give 
the rotation and scaling of the axes. This is based on  
maximization of the variance for each principle 
component. PCA automatically orders the principle 
components in order of importance and the variance of the 
data projected onto each principle component 
monotonically decreases by index. The first has the highest 
variance. As PCA performs rotation and scaling on the 
original data to obtain the transformed data it maintains all 
linear relationships of the data points. 

4.2 Distance-Based Key Finding 
In this model, the precomputed chroma templates and the 
summary chroma vectors calculated for Model I are used. 
For each summary chroma vector, PCA is applied to that 
vector and the 24 chroma templates. The 25 data points are 
then projected onto the new axes. A new PCA is calculated 
for every summary chroma point (instead of applying the 
same projection repeatedly) to ensure that the new data 
point contributes to the process. For a given number of 
dimensions, m, the chroma template point with the 
minimum Euclidean distance to the summary chroma point 
is found in the m-dimensional space. The key label of the 
nearest point is regarded as the key estimate. Here, m is the 
parameter to the model that determines how many 
dimensions of the transformed data will be used. The 
remaining components are ignored. 

As in Model I, a confidence value is calculated for each 
chroma summary vector. In this case, the confidence is 
given by the proximity of the estimate to a template point 
compared to its proximity to the next nearest template 
point. The confidence value is given by the difference 
between the two distances divided by the nearest distance. 
Similar to Model I, the confidence values are used as 
weights in determining the key estimate. 

5. Evaluation 
The key finding accuracies of the two models were 
evaluated using an audio collection consisting of 152 
classical pieces recorded from the naxos collection [18]. 
The first 30 seconds of each piece was processed. Pieces 

were chosen randomly among those with key information 
in their labels. The collection had music in all keys but the 
distribution was not uniform. The number of files in the 
same key ranged from 3 to 11. Works by the following 
composers were used: Albinoni, Albrechtsberger, Alkan, 
Bach, C.P.E. Bach, Beethoven, Bella, Brahms, Chopin, 
Clementi, Corelli, Dvorak, Grieg, Handel, Haydn, 
Hofmann, Kraus, Liszt, Mendelssohn, Mozart, Pachelbel, 
Paganini, Prokofiev, Rachmaninov, Scarlatti, Schubert, 
Scriabin, Telemann, Tchaikovsky, Vivaldi. 
Table 1. Raw and composite scores for Model I and Model II. 

 
Model 

Raw 
Score 
(%) 

Composite 
 Score 
 (%) 

 
Variance 

(%) 
Model I 86.2 88.9 - 
Model II – 12 components 85.5 88.4 100.0 
Model II – 8 components 84.2 87.2 98.7 
Model II – 6 components 85.5 88.7 94.8 
Model II – 4 components 78.9 83.7 87.6 
Model II – 3 components 76.3 81.9 79.6 
Model II – 2 components 32.9 44.9 71.1 

 
Model I was run on this audio set to obtain a reference 

for key finding performance. Model II was run on the 
same audio set with different parameters. Table 1 gives the 
results of the evaluation. The raw score is the percentage 
of the correctly identified keys. The composite score 
reflects the weighted contributions due to closely related 
keys as those used in the MIREX 2005 audio key finding 
evaluation explained in Section 3.5.  
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Figure 2. Key finding accuracy (top) and the percentage of 

variance accounted for in the projected data (bottom) versus 
number of dimensions. 



 
 

The top plot in Figure 2 shows the key finding accuracy 
versus the number of dimensions. This is indicated with 
the ‘*’ symbols and the continuous line. The dashed line 
shows the performance of Model I for comparison. The 
bottom plot shows the percentage of total variance 
accounted for in the portion of the projected data used as a 
function of the number of dimensions. This percentage can 
be viewed as the explanatory power of the data being used 
with the selected number of components. It should be 
noted that although there is not much difference in the 
percentage variance between 2 and 3 components, the 
accuracy is drastically poorer with 2 components. Again, 
for accuracy, it can be seen that the performance remains 
almost constant from 12 dimensions down to 6. This 
suggests that a tonal representation with at least 6 
dimensions can be used to capture the essential portion of 
information. It should be noted that accuracy plunges 
going from 3 dimensions down to 2 dimensions. This may 
be interpreted as a corroboration of toroidal models of 
tonal space over planar models (see for example [19]).  

6. Conclusion 
Two audio key finding models that produce successful 
results are presented and a comparative evaluation of the 
two is given. Model I that performed well in the MIREX 
2005 audio key finding evaluation is used as reference for 
performance evaluation of Model II. The second model 
implements key finding using a low-dimensional space. 
This model is run with a range of parameters in order to 
determine the effect of dimensionality for tonal 
representation in key finding. It was found that the key 
finding performance did not significantly change from 12 
dimensions to 6 dimensions, dropped slighted between 5 to 
3 dimensions, and dropped significantly using 2 
dimensions. It can be concluded that excellent 
performance is obtained with 6 and higher dimensions and 
3 to 5 dimensions provide acceptable performance. 

Future work will concentrate on further analysis of 
properties of the new low-dimensional space and explore 
mappings from spectral and chroma representations to 
low-dimensional features. Segmentation with respect to 
modulation points constitutes a direct application of these 
models. Chord boundary detection combined with key 
context may be used for tonal analysis. A front-end for 
tuning adjustment will prove useful for these models to 
cater to arbitrary reference frequencies. 
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