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Abstract
We present new methods for computing inter-song similari-
ties using intersections between multiple audio pieces. The
intersection contains portions that are similar, when one song
is a derivative work of the other for example, in two differ-
ent musical recordings. To scale our search to large song
databases we have developed an algorithm based on locality-
sensitive hashing (LSH) of sequences of audio features called
audio shingles. LSH provides an efficient means to identify
approximate nearest neighbors in a high-dimensional fea-
ture space. We combine these nearest neighbor estimates,
each a match from a very large database of audio to a small
portion of the query song, to form a measure of the approx-
imate similarity. We demonstrate the utility of our methods
on a derivative works retrieval experiment using both ex-
act and approximate (LSH) methods. The results show that
LSH is at least an order of magnitude faster than the exact
nearest neighbor method and that accuracy is not impacted
by the approximate method.

Keywords: Music similarity, audio shingling, nearest neigh-
bors, high dimensions

1. Introduction
This paper explores a means to compute the intersection be-
tween multiple audio pieces. We want to find the portions of
a piece that are similar, perhaps because one is a derivative
of the other, in two different musical recordings.

We are interested in approximate methods, where the ap-
proximation can be as good as necessary, because we now
have access to million-song databases. Exact algorithms
based on brute-force audio similarity measures are prohibitively
expensive. The key to our work is a new type of algo-
rithm called locality-sensitive hashing (LSH). LSH provides
a very efficient means to identify (approximate) nearest neigh-
bors in a high-dimensional feature space. We combine these
nearest neighbor estimates, each a match from a very large
database of audio to a small portion of the query song, to
form a measure of the approximate similarity of two songs.
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In our application two songs are similar if one portion is
approximately contained in another song.

There are two practical needs driving this work. First,
users often have a playlist they want to move to a new sys-
tem. We want to be able to offer the user a close match if we
don’t have the exact song title. Second, and perhaps more
importantly, commercial success in these days of large mu-
sic catalogs is based on finding the music that people want to
listen to. This is driven by a recommendation system, which
depends on users’ rating data. A recommendation system
will perform much better if we can propagate a user’s rating
to other recordings of the same song. The problem is analo-
gous to near-duplicate elimination in text document [4] and
image archives [13] and has many interesting analogues in
the audio domain.

1.1. Audio Similarity

It is difficult to define similarity and even more difficult to
score results. For the purposes of this work, we say two
songs are similar if one is a derivative of another. Derivative
works do not simply contain “samples” of the signal of an
original work, but instead use part of a vocal track and remix
it with new percussion and bass tracks. Furthermore, only a
small part of the source work is used for the derivative work,
so any method used to identify derivative works must be able
to identify a small amount of material in a completely new
context; this is called partial containment. Hence identifi-
cation of derivative works requires determining partial con-
tainment of approximately matching audio. For purposes of
evaluation, our ground truth is identified as songs with over-
lapping title stems which is discussed in Section 3.4. Table1
illustrates the related titles for Madonna’sNothing Fails.

Our similarity definition means that our work is different
from the work that has been done on audio fingerprinting
[15][11][5][21]. With fingerprinting users want to find the
name of a recording given a sample of the audio. The secret
sauce that makes fingerprinting work is based on defining
robust features of the signal that lend the song its distinctive
character, and are not harmed by difficult communications
channels (i.e. a noisy bar or a cell phone). These systems
assume that some portion of the audio is an exact match—
this is necessary so they can reduce the search space. We do
not expect to see a exact match in song intersection retrieval
and we are interested in ranking the songs that are similar to
each other.



Table 1. Derivative works of the Madonna title Nothing Fails
in a commercial database.

Duration Title
4m49s Nothing Fails
3m55s Nothing Fails (Nevins Mix)
7m27s Nothing Fails (Jackie’s In Love In The Club Mix)
7m48s Nothing Fails (Nevins Global Dub)
7m32s Nothing Fails (Tracy Young’s Underground Mix)
6m49s Nothing Fails (Nevins Big Room Rock Mix)
8m28s Nothing Fails (Peter Rauhofer’s Classic House Mix)
3m48s Nothing Fails (Radio Edit)
4m0s Nothing Fails (Radio Remix)

1.2. Locality Sensitive Hashing

Our audio work is based on an important new web algorithm
known as shingles and a randomized algorithm known as
locality-sensitive hashing (LSH) [4]. Shingles are a popular
way to detect duplicate web pages and to look for copies of
images. Shingles are one way to determine if a new web
page discovered by a web crawl is already in the database.
Text shingles use a feature vector consisting of word his-
tograms to represent different portions of a document. Shin-
gling’s efficiency at solving the duplicate problem is due to
an algorithm known as a locality-sensitive hash (LSH). In
a normal hash, one set of bits (e.g. a string) is transformed
into another. A normal hash is designed so that input strings
that are close together are mapped to very different locations
in the output space. This allows the string-matching prob-
lem to be greatly sped up because it’s rare that two strings
will have the same hash.

LSH, instead, does exactly the opposite; two patterns
that are close together are hashed to locations that are close
together. Each hash produces an approximate result since
there is always a chance that two nearby points will end up
in two different hash buckets. Thus, we gain arbitrarily-high
precision by performing multiple LSH mappings, each from
a different random direction, and noting which database frames
appear multiple times in the same hash bucket as our query.
Each hash can be as simple as a random projection of the
original high-dimensional data onto a subspace of the origi-
nal dimensions.

1.3. Contributions

This paper discusses our approach to song-similarity using
approximate matches. Our earlier work [6] showed that
matched filters, and thus Euclidean distance in feature space,
are an effective way to measure song similarity. We intro-
duce the idea of audio shingles and describe how we can use
them to effectively search a large database of songs by ap-
proximate matching using nearest neighbor methods. Each
nearest neighbor match is weak evidence that the two songs
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Figure 1. Specificity of derivative works identification. The
most specific queries are on the left of the figure and the most
generic on the right. Derivative works identification, as de-
scribed in this work, falls in between.

share a common musical motif or passage. By combining
these simple and fast distance measures, we can effectively
compute the intersection and similarity between nearby songs.

2. Previous Work
To date, a range of feature-based techniques have been pro-
posed for describing and finding musical matches from a
collection of audio. Figure 1 shows the range of options.
Fingerprinting [12] finds the most salient portions of the
musical signal and uses detailed models of the signal to
look for exact matches. At the other end of the specificity
scale, genre-recognition [20], global song similarity [17],
artist recognition [9], musical key identification [18], and
speaker identification [19] use much more general models
such as probability densities of acoustic features approxi-
mated by Gaussian Mixture Models. These so-called bag-
of-feature models ignore the temporal ordering inherent in
the signal and, therefore, are not able to identify specific
content within a musical work such as a given melody or
section of a song.

Our application requires algorithms that are robust to dif-
ferences in the lyrics, instrumentation, tempo, rhythm, chord
voicing and so forth, so we explore features that are invari-
ant to various combinations of these [2][3].

Inherent in our problem is the need to measure distances
in a perceptually relevant fashion and quickly find similar
matches without an exhaustive search through the entire database.
Existing Gaussian Mixture Model methods for computing
audio similarity do not scale to large databases of millions
of songs due to the computation required in pair-wise com-
parison of models using a suitable distance function such
as Earth Movers Distance (EMD) [14]. Likewise, high-
dimensional feature representations are susceptible to the
curse of dimensionality that leads to inefficient (linear time)
search algorithms. We will fail in large databases if we need
to look at every signal to decide which are closest.

Recent work shows that audio features are efficiently re-
trieved using locality-specific hashes (LSH) which have sub-
linear time complexity in the size of the database. This
is a key requirement for audio retrieval systems to scale
to searching in catalogues consisting of many millions of
entries. These methods have already found applicability in
image-retrieval problems [4]. LSH solves approximate near-
est neighbor retrieval in high dimensions by eliminating the
curse of dimensionality [10][8][7].

The features used to describe the signal are critical. LSH



is only appropriate when the signal can be represented by
a point in a fixed-dimensional metric space with a simple
norm (such as L2). For example, methods that compare se-
quences of different lengths, such as dynamic time warping,
are not easy to implement using LSH. Other models fail this
metric because the distance measure is not simple. These
include Gaussian mixture models and hidden Markov mod-
els. Earlier work [6] shows that LSH is theoretically able
to solve the audio sequence search problem accurately, and
in sub-linear time, when the similarity measure is a convo-
lution of sequences of audio features which provides an L2
norm.

Our previous work we showed that matched filters, and
therefore Euclidean distance, using chromagram and cep-
stral features performs well for measuring the similarity of
passages within songs [6]. The current work applies these
methods to a new problem, grouping of derived works and
source works in a large commercial database using an effi-
cient implementation based on LSH.

3. Song Intersection
We now describe the steps for retrieving songs from a database
with content that partially intersects with a query song.

3.1. Feature Extraction
Uncompressed 44.1kHz PCM audio signals are first seg-
mented into length 372ms frames overlapped with a hop
size of 100ms. The hop size was chosen to trade off tempo-
ral acuity against time and space complexity for the search.
Previous work indicates that, even at the signal level, the
spectrum is sufficiently correlated in time that small shifts
in frame alignment lead to small changes in feature values
[15].

We derive two features using constant-Q spectrum trans-
form. Log-frequency cepstral coefficients (LFCC) are ex-
tracted using a16th-octave filterbank and chromagram fea-
tures are extracted with a12th-octave filterbank. In both
cases the filterbank extended from62.5Hz to8kHz. The fil-
terbank was normalized such that the sum of the logarithmic
band powers equalled the total power.

To extract the LFCC coefficients we used a discrete co-
sine transform (DCT) retaining the first 20 coefficients. To
extract CHROM features we summed the energy in logarith-
mic bands at octave multiples of 12 reference pitch classes
corresponding to the set{C, C#, D, ..., A#, B}.

3.2. Audio Shingles
We create a shingle by concatenating 30 frames of 12-dimensional
chromagram features into a single 360 dimensional vector.
Much like the original work on shingles [4], we advance a
pointer by one frame time, 100ms, and then calculate a new
shingle. Unlike text shingles, which are word histograms,
our shingles are time-varying vectors. To make the shingles
invariant to energy level we normalized the shingle vectors
to unit length.

We use the vector dot product to compute the similarity
between a pair of shingles. This can be computed efficiently
for audio shingles using convolution which is proportional
to the L2 (Euclidean) distance between them [16][6].

3.3. Similarity Measurement
For this paper, we use a new version of LSH based on p- sta-
ble distributions [8][1]. With a p-stable distribution, vector
sums of random variables from a p-stable distribution still
have the original probability distribution. We form a num-
ber of dot products between the database entries and random
variables from the p-stable distribution. Each of these dot
products forms a projection onto the real axis, and helps us
estimate the true distance.

We can then divide up the real axis into buckets and form
a hash that is locality specific points that are close together
in the input space will be close together after projection onto
the real axis.

Our similarity measurement is performed in two stages.
We first search for theN audio shingles in our database that
are closest to each query song. Given these nearest neighbor
matches, found using brute force or LSH, we look at the
top N shingle matches for a pair of songs and compute the
similarity by averaging these smallestN distance scores to
find the similarity between the two songs. Thus a short frag-
ment that is contained in another song will cause the simi-
larity measure to be small and indicate a close match.

Our use of LSH is different from its use when finding
nearest neighbor matches. Normally, the points found by
LSH are checked with an exact distance calculation to en-
sure that they are true nearest neighbors, and not the resultof
a hash conflict. In our case, we skip this filter. We are only
interested in the average distance, so we use all the close
points returned by LSH to form our estimate. In essence we
are using LSH to estimate the matched filter between two
shingles.

In addition, our data is more randomly distributed than in
normal uses of LSH. Often the nearest matches when finding
text duplicates are truly close to the query, perhaps differing
in a few discrete directions. In our case, we see that the
data is randomly distributed in our 360 dimensional space.
We expect a Gaussian noise models the distance between an
audio shingle and it’s closest neighbor.

Figure 2 shows a plot of the inter-point distances between
chromagram shingles and random Gaussian-distributed vec-
tors. The distance histograms, after scaling, are nearly iden-
tical. This equidistance behavior, and the exponential growth
of the distance histogram means that it is hard to pick the
right radius for the nearest neighbor calculation for this ap-
plication of LSH.

3.4. Data Set
We performed our experiments on the complete recordings
of two artists, Madonna and Miles Davis. These two artists
were chosen because they both have extensive back catalogs
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Figure 2. Intra-song Vector Distance Histograms. Compar-
ing the distance between 100-frame chromagram shingles and
(solid line) and two Gaussian random vectors (dashed line.)

Table 2. Distribution of derivative works in a 2018 song subset
of the database.

Artist Tracks Stems Sources Derivatives
Madonna 306 142 82 164
Miles Davis 1712 540 348 1172

and their music is available electronically. Each recording
has a unique20-digit unique identifier (UID) that is used to
locate metadata such as artist, title, album and song length.
We obtained exact copies of each commercially distributed
recording in alosslessformat from the Yahoo YMU ware-
house (80GBytes of data) and performed our feature extrac-
tion directly on the 44.1kHz PCM representation. Our ex-
periment catalogue consists of306 separate Madonna record-
ings and1712 separate Miles Davis recordings. The total
duration of audio was222 hours26 minutes and14 seconds.

On inspecting the catalogue, it is immediately apparent
that many recordings share all, or part, of their title strings.
To stem the titles, we first removed any puncuation, such
as quotation marks, and truncated each title up to the first
parenthesis if present, else no truncation occured. Any lead-
ing or trailing whitespace after these transformations was
also removed. For example, all of the titles in the Table 1
were transformed by the stemming to the string“Nothing
Fails.”

Once the titles in the database were stemmed, we gath-
ered statistics on title use within each artist’s collection of
songs, which are summarized in Table 2.

There were306 different Madonna recordings in the database
with 142 unique title stems,82 of which had derivative ver-
sions(58%), giving a total of164 derivative works. Simi-
larly, there were 1712 different Miles Davis recordings, with
540 unique title stems, of these 348 had derivative versions

(64%) giving a total of 1172 derivative works.
We used 20 Madonna songs with deriative works as our

test set. From the set of songs with the same title stem, a
“source” song was selected as being the historically earliest
version of the song in the database. The number of relevant
matches for the set of 20 such source queries (not including
the queries themselves) is 76 songs of the 2018.

4. Results
In this section we describe the details and evaluation of re-
trieving derivative works by nearest neighbor audio shin-
gles. The similarity measure is a measure of the degree of
intersection between the songs in the database. In our ex-
periments, reported here, silence was first removed using
an absolute threshold and then low-energy shingles were re-
moved if they were below the mean energy for the song.

4.1. LSH Experiment

In the first experiment we extracted30-frame shingles of 12-
dimensional CHROM features with a hop size of one frame
(0.1s). This yielded a 360 dimension vector every0.1s. For
each song in the detabase we found 10 nearest neighbors
for pairs of query and database song shingles. The average
of the 10 nearest distances for each song was taken to be
the measure of intersection between the query song and the
database song. Sorting the distances yielded a ranked list of
database songs for the given query song. This operation was
performed for all of20 query songs.

We used textual title stem matches to identify ground
truth derivative works, see Table 1. We recorded true posi-
tives and false positives at each level of recall standardized
into 10th-percentiles. Confidence intervals were estimated
using the standard deviation of the precisions at each 10th-
percentile interval and dividing by the square root of the
number of query songs.

Figure 3 shows the results of retrieval of song intersec-
tions using the LSH algorithm varying the search radius for
nearest neighbors. The dotted line shows the result for ex-
act nearest neighbor retrieval. The remaining lines show the
performance of LSH retrieval using raidii0.04 ≤ r ≤ 0.2.
At 70% recall the algorithm achieves70% precision forr =
0.2, dropping to51% precision for100% recall. We note
the the LSH approximation did not introduce any signifi-
cant error in the derivative works retrieval task for a radius
of r = 0.2, but for lower radii the precision decreased sig-
nificantly when compared with the exact algorithm’s perfor-
mance. This illustrates the need to choose the correct search
radius for the task.

4.2. Feature Variation

In the next experiment we varied the features to test which
feature combination performed best in our task. We also in-
creased the shingle size to100 frames, thus yielding 1200
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Figure 3. Performance of LSH nearest neighbor retrieval for
estimating song intersections (derivative works). Audio shin-
gles were 30 frames and the search radius varied between
r = 0.04 and r = 0.2. The dotted line shows the exact nearest
neighbor result for search radiusr = 0.2.

dimensional vectors for the CHROM features and 2000 di-
mensional vectors for LFCC. For comparison to the Chro-
magram extraction method of Bartsch [2] we tried a varia-
tion on CHROM features with a cutoff frequency of 2kHz
instead of the 8kHz cutoff used for the rest.

We also tried a joint feature space consisting of both CHROM
and LFCC features. Here, the song similarity measure is a
weighted average of the chromagram and lfcc features. Re-
sults are shown for 0.9*CHROM + 0.1*LFCC; an empiri-
cally determined mixture of the distances.

Figure 4 shows the results for the feature variation exper-
iment. The worst performing features were CHROM, with
2kHz cutoff, and LFCC both returning a precision of65%
at 70% recall. For the CHROM features, with 8kHz cutoff,
the performance is much better and almost identical to that
shown in Figure 3. From this we conclude that increasing
the shingle size from3s to 10s had no significant impact on
the results. We also note that CHROM features performed
significantly better than LFCC but significantly worse than
the joint CHROM+LFCC feature space. The improvement
might be accounted for by the false negative rate being re-
duced but not the false positive rate using the joint feature
space. CHROM and LFCC encode qualitatively different as-
pects of the songs– CHROM features encode the harmony
and pitch content, and LFCC features encode the timbral
content. However, we were surprised that the joint features
performed better and we are investigating the reason.

To see how retrieval performance scaled, we compared
performance using the 306-song subset with the 2018-song
database, Figure 5. There was a 10% drop in precision for
the larger database at recall rates greater than 40%. The
precision was 63% at a recall of 70% for the larger data set.

Figure 4. Performance of exact audio shingle retrieval for dif-
ferent features and a feature combination. Here the audio shin-
gles are10s in length.

Figure 5. Comparative performance for database of 306 songs
and 2018 songs.



4.3. Time complexity of Exact vs. LSH Algorithms
The time complexity of the exact approach is|Q| × |S̄| ×
d × w × O(N) in the number of songs in the database,N ,
the number of query shingles,|Q|, the average number of
shingles per song,̄|S|, the feature dimensionality,d, and the
length of the shingles,w. For the twenty queries matched
against a 306-song database using chromagram features, this
results in approximately306×20×3000×3000×12×30 =
19.8 × 1012 multiply-accumulate operations. Computation
for the exact algorithm approximately 7 hours using a 3GHz
PPC processor. For the 2018-song database, computation
time increased to approx. 150 hours for the exact algorithm.

The LSH algorithm’s performance depends on the size
of the hash buckets and the degree of approximation used in
the nearest neighbor search. For our chosen parameters, the
LSH program completed the task in approximately 1 hour
for the 306-song dataset. However, more than half of the
time was spent self-tuning the parameters and building the
hash tables, both of these are operations that only need to
be performed once for each radius. We observed that the re-
trieval part of the execution cycle took less than 30 minutes,
therefore running at least14 times faster than exact nearest
neighbor retrieval.

5. Conclusions
We introduced audio shingles for measuring musical simi-
larity. We employed them as a means for identifying mu-
sical works that approximately match, or intersect, over a
part of their content. We described the features used and
the similarity methods employed as well as two algorithms
for implementing the similarity-based retrieval using nearest
neighbor search.

The exact method gives good results, but it takes a long
time to compute the answer, scaling linearly in the size of
the database. The approximate algorithm based on LSH is
greater than an order of magnitude faster and yields accurate
results on our chosen task.

Our conclusion is that hashing for low-level audio fea-
tures is accurate and speeds up complex retrieval tasks sig-
nificantly.
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