
Tempo Tracking With a Periodicity Comb Kernel
 Ian Leue      Ozgur Izmirli 

Center for Arts and Technology 
Connecticut College 

270 Mohegan Ave, New London, CT. USA. 
ipleu,oizm@conncoll.edu 

Abstract 
Automatic tempo extraction and beat tracking from audio 
is an important ability, with many applications in music 
information retrieval. This paper describes a method for 
tempo tracking which builds on current research in the 
field. In this algorithm, an autocorrelation surface is 
calculated from the output of a spectral energy flux onset 
novelty function. The most salient repetition rate is 
calculated by cross-correlating dilations of a comb-like 
prototype spanning multiple frames and the autocorrelation 
surface. The method addresses tempo tracking through 
time to account for pieces with variable tempos. In order to 
compare the performance of our method on music with 
strong and weak percussive onsets we have evaluated it on 
both classical music with and without percussion and 
popular music with percussion. Additionally, beats are 
phase-aligned and superimposed on the signal for aural 
evaluation. Results show the comb kernel to be a useful 
feature in determining the correct beat level. 
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1. Introduction 
Much work has been done in onset detection, tempo 
extraction and beat tracking. However, the problem of 
metrical hierarchy identification has proven to be difficult.  
It is non-trivial to find which multiple of the tatum is 
perceived as the beat. This paper describes a tempo 
tracking algorithm that emphasizes the most salient 
multiple of the tatum. It works locally, tracking both static 
and changing tempos. We have evaluated the algorithm on 
both popular and classical music, which is harder to track. 

Tempo is a fundamental aspect of western music, and 
its recognition is considered imperative for computer 
understanding of music [1]. Advances have been made in 
recent years towards onset detection and effective tempo 
tracking from audio [2,3]. See [1,4] for overviews. 

Our algorithm works directly from uncompressed audio 
and creates a time-variable tempo curve. It performs 

periodicity estimation on spectral onset features reported 
in previous work [1,5,6,7]. Specifically, we detect onsets 
using a spectral energy flux feature [1,7,8], perform an 
autocorrelation on the onsets, then cross-correlate a range 
of dilations of a comb-like prototype spanning multiple 
frames with the autocorrelation for an estimate of tempo. 

2. Method 

2.1 Onset Detection and Periodicity Estimation 
We separate the audio into 7 logarithmic frequency bands 
and perform a differentiation on energy in each band. The 
sum of the differentiated energy outputs across all bands is 
a signal representing the level of onset versus time. 

After detecting onsets, we calculate the autocorrelation 
surface A(τ, n) from the onset signal to find the repetition 
pattern over time. The autocorrelation is performed on 8 
second windows and is hopped in 1 second increments.  
Here, τ represents the lag and n is the time index. We 
calculate autocorrelation by sliding windows over the 
original full signal. The result is a “trend-corrected” 
autocorrelation surface (see Figure 1) that favors all lag 
times equally, and is primed for the comb prototype. 

2.2 Beat-level Estimation 
While autocorrelation can effectively find self-similarity at 
various lag times, it still leaves open the question of beat-
level. Past algorithms picked the highest non-zero lag in 
the autocorrelation [9] or the highest lag with a multiplicity 
relationship with other high lags [1]. We sought to build 
on this groundwork by utilizing a tented comb-like 
prototype. 

     
Figure 1.  Left: Autocorrelation surface A(τ, n). Right: 

Tented Comb-like Prototype C(τ, j), graphed at a specific 
dilation in the lag-domain. Height indicates prong weight.  
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We construct a comb prototype corresponding to the 
slowest allowable tempo, Ts. Then, for each time index, we 



cross-correlate between dilations of this prototype and the 
autocorrelation surface. Prototypes C(τ, j) are designed to 
highlight the salient beat level (see Figure 1). Each comb 
has M prongs (typically 4) at multiples of its current lag 
value. This is expected to reveal the highest similarity to 
the beat-level lag when cross-correlated with the 
autocorrelation surface. These prongs are tented in the lag-
domain to allow for irregularities in the performance and 
time-quantization, and index j extends through N time 
frames to ensure that the repetition found in that frame is 
not temporary. Consecutive prongs have decaying weights.  

Each comb dilation is cross-correlated with the 
autocorrelation surface to calculate the most salient lag:  
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where r is the dilation factor of the prototype (1..Rmax).  
Rmax is the ratio of the fastest tempo to the slowest tempo. 
τmin and τmax are limits on the lag axis corresponding to the 
span of the comb for the fastest and slowest tempos. n is 
the time index of the tempo estimate, N is the number of 
time frames used in the cross-correlation.  

Studies have shown that listeners prefer a beat centered 
around 120 beats per minute (BPM)[10]. To model this, 
we apply a preference curve using the Parncutt function, 
w(r), as formulated in [10] but with a β value of 0.25:  
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As formulated, the spontaneous tempo is 120 BPM and 
Ts is the slowest tempo of interest. The tempo estimate for 
each time index, n, is found by first determining the value 
of r that maximizes w(r)B(r,n). The tempo estimate is 
given by rTs in BPM. This operation, performed on all 
frames, results in a time-variable tempo curve with 
estimates 1 second apart. 

3. Results and Evaluation  
In order to compare the performance of our method on 
music with strong and weak percussive onsets we 
constructed two test sets: one containing percussive and 
non-percussive classical music, and one containing 
percussive popular music. These test sets contained 45 and 
30 tracks respectively and were picked randomly. 

We annotated each piece and compared that to the 
longest-lasting tempo in the tempo curve. We then 
calculated a performance score for each test set based on 
the evaluation criteria used for MIREX 2005. Within an 
8% tolerance zone, 1 point was awarded to the correct 
tempo, .8 for twice or half, and .6 for thrice or one third.  
These scores were averaged over the entire test set to 
create a single performance score between 0 and 1. For 
comparison purposes, we also implemented a very simple 
beat-level estimation scheme in which we picked the peak 
non-zero lag from the autocorrelation surface for each time 

frame. Our method found 80% (score = 0.96) of the 
tempos correctly for popular music and 63% (score = 0.81) 
of the tempos correctly for classical music. The simple 
method performed poorly with 16% (score = 0.22) on the 
popular set and 7% (score = 0.12) on classical set. 

In addition, we phase-aligned and superimposed 
synthetic beats onto the original signal for aural 
evaluation.  This consisted of constructing a local 4-second 
beat train from the tempo curve, cross-correlating that beat 
train with the onset output, picking the cross-correlation’s 
peak as the time of a beat and repeating this for the entire 
piece. This made it easier to aurally evaluate the 
algorithm’s performance with variable tempos. The piece 
“Alphabet Aerobics” by Blackalicious for instance, has a 
steadily increasing tempo, and we were able to listen to the 
algorithm successfully track the changing tempo.  

4. Conclusion 
The results are promising with MIREX-based scores of 
0.96 and 0.81 for the two test sets. They also indicate 
clearly that utilizing a comb kernel as formulated in this 
paper can be more effective than other (admittedly 
primitive) beat-level estimation schemes. We tested and 
evaluated our method on both popular and classical music 
in order to have a baseline benchmark for both genres.  
Results show that classical music remains an area with 
room for improvement, and future work will focus on new 
onset features targeted towards detecting tonal onsets. 
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