
Fast Generation of Optimal Music Playlists using Local Search

Steffen Pauws, Wim Verhaegh, Mark Vossen
Philips Research Europe
High Tech Campus 34
5656 AE Eindhoven

The Netherlands
steffen.pauws/wim.verhaegh@philips.com

Abstract
We present an algorithm for use in an interactive music sys-
tem that automatically generates music playlists that fit the
music preferences given by a user. To this end, we introduce
a formal model, define the problem of automatic playlist
generation (APG) and indicate its NP-hardness. We use a
local search (LS) procedure based on simulated annealing
(SA) to solve the APG problem. In order to employ this LS
procedure, we introduce an optimization variant of the APG
problem, which includes the definition of penalty functions
and a neighborhood structure. To improve upon the per-
formance of the standard SA algorithm, we incorporated
three heuristics referred to as song domain reduction, par-
tial constraint voting, and two-level neighborhood structure.
In tests, LS performed better than a constraint satisfaction
(CS) solution in terms of run time, scalability and playlist
quality.

Keywords: local search, simulated annealing, music
playlist generation, music retrieval.

1. Introduction
To realize personalized assistance in music choice, we re-
search the automatic generation of music playlists by means
of mathematical programming and combinatorial optimiza-
tion. As a first prerequisite, we need to be able to reason
about songs. Therefore, we think of songs as a list of at-
tributes that are deemed to be relevant for music choice. As
shown in Table 1, song attributes can benominal such as
the song/album title or the performing artist, allowing only
reasoning in terms ofequivalenceandset membership(e.g.,
these two songs are by the same artist). Attributes can also
benumericalsuch as the duration and the tempo of the song;
numerical attributes allow the computation of adifference
between attribute values. Data extracted from musical au-
dio such as a chroma spectrum for key/chord information
or timbre features devised for audio similarity purposes can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

be represented as vectors of numericals. Other types of at-
tributes (e.g.,categorical, ordinal) are also possible.

Table 1. Song attributes and types.
k attribute type example
1 song ID nominal 101
2 title nominal All Blues
3 artist nominal Miles Davis
4 album nominal Kind of Blue
5 genre nominal Jazz
6 duration numerical 696 (secs)
7 year numerical 1959
8 tempo numerical 137 (bpm)
9 chroma spectrum numericals
10 audio features numericals

Informally, a playlist is a sequence of the ‘right’ songs at
the ‘right’ positions that can be played back in one go. What
is ‘right’ in this respect depends on the prevailing purposes
of everyday music listening. In our work, we model these
desired playlist properties as formal constraints that are de-
fined over the playlist positions in terms of song attributes.
We distinguish three types of constraints. Aunaryconstraint
poses a restriction for a single playlist position (e.g, the first
song should be a ‘jazz-song’). Abinary constraint declares
a desired relation between songs at two different positions.
Order or similarity of songs at two positions are examples
(e.g., both songs should have the similar tempo/timbre). Fi-
nally, a global constraint is defined on any number of po-
sitions. For instance, they can express restrictions on car-
dinality for the entire playlist (e.g., there should be at most
two different genres in a playlist) or group a set of unary
or binary constraints all together (e.g., all songs should be
‘jazz-songs’).

Since the algorithms will be used in an interactive mu-
sic system, demands onefficiency, scalability, andplaylist
quality (i.e., optimality) are pressing. Time to compute a
playlist should run in a few seconds, since there is a user
waiting for the result. In some applications, we can afford
ourselves to present a partial (non-optimal) playlist, while
computing the rest of the playlist. The algorithms should
scale towards playlists of any length and music collections
of any size and any variety. The returned playlist should be
optimal and reflect the music preferences given by the user,

even if these preferences result into conflicting constraints
and no playlist exists that meets all preferences expressed.

After discussing related work, we present a formal model
and the computational difficulties of the automatic playlist
generation problem in Section 2. An optimization variant of
the problem will be introduced in Section 3, which allows us
to use a class of generic approximation algorithms known as
local search. We will explain the use of simulated annealing,
as a special case of local search, for our optimization prob-
lem in Section 4. A study of the problem structure provided
us heuristics to improve simulated annealing for our prob-
lem. In Section 5, we show the evaluation of the algorithm
in a comparison test.

1.1. Related work

Playlist generation is an active field within MIR. Here, we
only review approaches that use problem formulations sim-
ilar to ours.

Alghoniemy and Tewfik [1] present a network flow ap-
proach to playlist generation and a branch and bound algo-
rithm to solve it as a binary linear program. Unfortunately,
branch and bound is an exponential algorithm in the worst
case.

Pachet, Roy and Cazaly [2] use a constraint satisfaction
formulation in which desired properties of the playlist are
declared by constraints to be met. Aucouturier and Pa-
chet [3] later re-formulate the problem to allow the use of
approximating algorithms based on local search to scale the
approach towards very large music collections. Costs are
associated with playlists: the more constraints are violated,
the higher the cost. The use of this solution method is also
the subject of this paper. A more detailed exposition of the
method and its evaluation can be found elsewhere [4].

2. A formal model
Formally, a song is given by a vectors = (v1, . . . , vK)
of attribute values, denoting that thek-th attribute of song
s has valuevk ∈ Dk. For an example of attributes, see
Table 1. Next, a music collection is given by a setM =
{s1, . . . , sm} of m songs.

A playlist is formally defined by a vectorp =
(p1, . . . , pn) of lengthn, wherepi ∈ M denotes the song
at thei-th position, for alli = 1, . . . , n. Each songpi is
again a vector of lengthK, so we can denote attributek of
songpi by pik. Although the lengthn is not specified be-
forehand, we assume that a lower boundnmin and an upper
boundnmax are given.

A playlist has to meet a set of declared unary, binary and
global constraints. Aunary constraintrestricts the choice
of songs for one specific position. In its general form, it is
given by a triple(i, k, V), for a positioni ∈ {1, . . . , nmin},
attributek ∈ {1, . . . , K}, and value setV ⊆ Dk, and it
implies thatpik ∈ V has to hold. For instance, to specify
that the first song of the playlist should be of genre Rock or

Jazz, we choosei = 1, k = 5, andV = {Rock, Jazz}. Note
that we do not allowi > nmin, as the resulting playlist may
not be long enough to have such a position.1

To enable a more efficient specification of unary con-
straints, we introduce the following three specific forms.

• In anexclude-unaryconstraint, we specify a setW ⊆
Dk of forbidden attribute values, meaning thatV =
Dk \W .

• In a range-unaryconstraint, the set of desired values
V is given by an interval[v, w], that is,V = {x ∈
Dk | v ≤ x ≤ w}. This constraint requires a (partial)
order on the attribute involved.

• In a similar-unaryconstraint, the setV is given indi-
rectly byV = {x ∈ Dk | l ≤ f(v, x) ≤ u}, using
a similarity functionf : Dk ×Dk → [0, 1], attribute
valuev ∈ Dk, and boundsl, u ∈ [0, 1] on the desired
similarity.

A binary constraintenforces a relation between songs
at two specific playlist positions. In its general form, it
is given by a four-tuple(i, j, k, d), for positions i, j ∈
{1, . . . , nmin}, attributek ∈ {1, . . . ,K}, and functiond :
Dk → 2Dk , and it implies thatpik ∈ d(pjk) has to hold.
The functiond is generally not given explicitly, but implic-
itly as in the following five specific forms of binary con-
straints.

• In anequal-binaryconstraint, the functiond is given
byd(v) = {v} for all v ∈ Dk. This implies thatpik =
pjk has to hold. For aninequal-binaryconstraint, we
take the complement given byd(v) = Dk \ {v}.

• In a smaller-equal-binaryconstraint,d is given by
d(v) = {x ∈ Dk | x ≤ v}, implying thatpik ≤ pjk

has to hold. Note that this constraint again requires
a (partial) order on the attribute. Agreater-equal-
binaryconstraint is quite similar in its definition.

• Finally, in asimilar-binaryconstraint, the functiond
is given byd(v) = {x ∈ Dk | l ≤ f(x, v) ≤ u},
again using a similarity functionf : Dk × Dk →
[0, 1], and boundsl, u ∈ [0, 1] on the desired similar-
ity. So, this constraint impliesl ≤ f(pik, pjk) ≤ u.

Global constraintspose restrictions on songs at a num-
ber of positions. The set of positions is denoted by
an interval [i, j], with i ∈ {1, . . . , nmin} and j ∈
{1, . . . , nmin, . . . , nmax}, which is formally defined as the
set{l ∈ N | i ≤ l ≤ j∧ l ≤ n}. Note that ifj = nmax, then
this set depends on the lengthn of the playlist, and contains
at least all positions fromnmin onwards in the tail of the
playlist.

1 Or, conversely, if one wants to restrict the song on a certain positioni,
one has to choosenmin ≥ i.

There is no general form of a global constraint, except
that it always contains an interval[i, j] as described above,
and an attributek ∈ {1, . . . , K} on which it applies. Some
of the global constraints that we consider are defined here-
under.

• A cardinality-globalconstraint is given by a five-tuple
(i, j, k, a, b), where apart from the interval[i, j] and
attributek a lower bounda and upper boundb are
given on the number of different attribute values that
are allowed. More specifically, this constraint implies
thata ≤ |{plk | l ∈ [i, j]}| ≤ b has to hold.

• A count-global constraint is given by a six-tuple
(i, j, k, V, a, b), with V ⊆ Dk anda, b ∈ N, imply-
ing thata ≤ |{l ∈ [i, j] | plk ∈ V }| ≤ b has to hold.
In other words, the number of songs in the interval
with an attribute value fromV should be betweena
andb.

• A sum-global constraint is given by a five-tuple
(i, j, k, a, b), with boundsa, b ∈ R, and it denotes
thata ≤ ∑

l∈[i,j] plk ≤ b. Note that it is only defined
for numerical attributes.

In addition, we use global constraints that imply a unary
constraint on each position in an interval (i.e.,each-global),
that poses a binary constraint on each two successive posi-
tions in an interval (i.e.,chain-global), and that poses a bi-
nary constraint on every pair of positions in an interval (i.e.,
pairs-global).

Having everything in place now, we can give a formal
definition of the playlist generation problem, as follows.

Definition 1. (Automatic playlist generation problem
(APG)) Given a music collectionM , a set of constraints
C, and length boundsnmin andnmax, find a playlistp of
n ∈ {nmin, . . . , nmax} songs fromM such thatp satisfies
all constraints inC.

Without going into details, we indicate that APG is NP-
hard. This is caused by aspects corresponding to four dif-
ferent NP-complete problems [5]. For instance, finding a
playlist in which each two consecutive songs are similar is
comparable to the Hamiltonian path problem. Next, find-
ing a playlist in which for each attribute the occurring val-
ues are different corresponds to the 3-dimensional matching
problem. Finding a playlist with a total duration of a cer-
tain length corresponds to the subset sum problem. Finally,
finding a playlist in which each two songs are sufficiently
different is comparable to the independent set problem.

3. An optimization variant
As APG is NP-hard due to several reasons, we opt for a
generic approximation method. To this end, we convert
APG into an optimization variant APG-O by introducing a

non-negative penalty function that represents the amount of
violation of the constraints. Then, instead of searching for a
playlist that meets all constraints, we search for a playlist
that minimizes the penalty by a local search method. If
the penalty is zero, all constraints are met. Introducing a
penalty also overcomes the issue of over-constrained prob-
lem instances. In that case, no solution exists that meets all
constraints, but a playlist is generated that meets the con-
straints as well as possible.

The penalty function for a playlist is as follows. First,
we define for each constraint a penalty function that returns
a value from[0, 1]. Next, the penalty of a playlist is given
by a weighed average of each of the constraint penalties.
The weights can be used to give more importance to one
constraint over the other. In case of an over-constrained in-
stance, this allows to trade-off different constraints.

For the penalty function definitions, we use a special nor-
malized difference function,ª, between attribute values.

• For a nominal attributek, we determine (in)equality
between values, that is, for each two valuesa, b ∈ Dk,
aª b = 0, if a = b, andaª b = 1, otherwise.

• For a numerical attributek, we use the difference as
defined byaª b = |a−b|

max Dk−min Dk
.

Also for other types of attributes, a suitable difference func-
tion can be defined.

Now, we can define the constraint penalties. For a unary
constraint(i, k, V), we define the penalty as the minimum
difference to any element fromV , that is, asmin{pik ª
v | v ∈ V }. We however make an exception for two of the
three specific forms.

• For anexclude-unaryconstraint, the setV is indicated
by its complementW = Dk \ V , with W typically
very small. To prevent very small penalty values due
to normalization, we define the penalty for this con-
straint as0 if pik 6∈ W and1 otherwise.

• For asimilar-unaryconstraint, the requirement is that
f(v, pik) should lie in the interval[l, u]. Hence, we
define the penalty to be equal to the distance to this
interval, that is, the penalty is given bymin{|x −
f(v, pik)| | x ∈ [l, u]}. This is comparable to the
general definition of unary-constraint penalties, ex-
cept that we defined it on the co-domain off , instead
of on attribute values directly.

For a binary constraint(i, j, k, d), the requirement is that
pik ∈ d(pjk). The corresponding penalty is therefore de-
fined asmin{pik ª v | v ∈ d(pjk)}, comparable to unary
constraints. Again, we make the following two exceptions
to this definition.

• For aninequal-binaryconstraint, we define a penalty
of 0 if pik 6= pjk and1 otherwise.

• For a similar-binary constraint, we again use the
similarity function f and boundsl, u in the defini-
tion of the penalty, resulting in a penaltymin{|x −
f(pik, pjk)| | x ∈ [l, u]}.

The penalties for global constraints are defined as fol-
lows.

• For a cardinality-global constraint(i, j, k, a, b), the
numberγ = |{plk | l ∈ [i, j]} of different attribute
values is required to lie betweena andb, hence we de-
fine the penalty by1δ ·min{|x− γ| | x ∈ {a, . . . , b}},
whereδ is given bymax{a, |[i, j]| − b} for normal-
ization.

• For a count-global constraint (i, j, k, V, a, b), the
number of songsµ = |{l ∈ [i, j] | plk ∈ V } with
an attribute value fromV should lie betweena andb,
so we define the penalty by1δ · min{|x − µ| | x ∈
{a, . . . , b}}, with againδ = max{a, |[i, j]| − b}.

• For a sum-globalconstraint(i, j, k, a, b), where the
sumσ =

∑
l∈[i,j] plk should lie in[a, b], the penalty

is given by 1
δ′ ·min{|x−σ| | x ∈ [a, b]}. As the mini-

mum possible sum equalsv = |[i, j]|min Dk and the
maximum possible sum equalsw = |[i, j]|max Dk,
we choose the normalization constantδ′ = max{a−
v, w − b}.

In addition, the penalties for theeach-global, chain-
global andpairs-globalare defined by the normalized sum
of the penalties of their constituent unary or binary con-
straints.

4. Local search

The definition of the optimization variant APG-O allows us
to solve it with a generic approximation method such as lo-
cal search (LS) [6]. The key feature of local search is that
it searches the solution space by iteratively stepping from
one solution to aneighboringsolution, and comparing their
quality. A neighborhood structuredefines which solutions
are neighbors to a given solution, which are usually obtained
by making small alterations to the given solution. For APG-
O, solutions are given by playlists, and its neighborhood
structure is given in Section 4.2, consisting of replacements,
insertions, deletions, and swaps of songs. The cost function
is obviously given by the total weighed penalty of a playlist,
which we denote byf(p).

A solution is calledlocally optimal if there is no neigh-
boring solution with better cost. A solution is calledglobally
optimal if there is no solution in the whole solution space
with better cost. The objective of APG-O is to find such a
global optimum, that is, a playlist with minimal penalty.

4.1. Simulated annealing
Basic LS algorithms likeiterative (first and best) improve-
mentwere foundnot to be well equipped to solve our prob-
lem as they fell into local optima. Therefore, we consider
simulated annealing(SA), which incorporates a mechanism
to escape from local optima without a need for restarting [7].

In contrast to the basic LS algorithms, SA replaces the
deterministic (strict improving) acceptance criterion by a
stochastic criterion. More specifically, a control variablet
is introduced, and the chance of accepting a neighboring so-
lution p′ to a given solutionp is defined by the acceptance
probability

Pr(p′|p) =

{
1 if f(p′) ≤ f(p), and

exp
(

f(p)−f(p′)
t

)
otherwise.

As we can see, the chance of accepting a deteriorating solu-
tion depends on the amount of deterioration, as well as the
control parametert. For each value oft, sequences of so-
lutions are generated and evaluated, after which the control
variable is lowered by a decrement function. As a result, the
chance of accepting deteriorating solutions decreases dur-
ing the course of the algorithms. For further explanation of
SA, we make a forward reference to Figure 1 for our final
algorithm.

SA algorithms make use of a so-calledcooling schedule,
which consists of the sequence length of solutionsLh, the
initial value of the control parametert0, the decrement func-
tion used for decreasingt, and a stop criterion. We use age-
ometric cooling schedulethat has been successfully applied
to many problems described in literature. For APG-O, this
results in a choice ofLh = 10, t0 = 1, decrement function
th+1 = 0.9 · th, and stop criterion(f(p) < ε || h > H), that
is, we stop if all constraints are ‘sufficiently’ satisfied or we
did a pre-defined number of iterations.

4.2. Neighborhood definition
For the neighborhood, we defined the following four types
of moves.

A replace movechooses a playlist position and a new
song from the music collection and replaces the song that is
at that position by the new song.

An insert movechooses a position in the playlist (ifn <
nmax) and a new song from the music collection and inserts
that song into the playlist at the chosen position.

A delete movechooses a position in the playlist (ifn >
nmin) and removes the song at that position.

Finally, aswap movechooses two positions in the playlist
and swaps the songs that appear at these positions.

Each of the above four types of moves defines a neigh-
borhood. The complete neighborhood is given by the union
of these four neighborhoods. To balance the selection of the
four individual neighborhoods for generating a new solu-
tion in our SA algorithm, we introduceprobability weights

wreplace, winsert, andwdelete, which determine the proba-
bility of performing a particular type of move. In tests [4],
we found1/3 to be a good performing value for all weights
for a collection of 2,248 songs. Swap moves are treated in a
separate neighborhood (see Section 4.3.2).

As the moves described above make small modifications
to a playlist, the changes in penalty function can be calcu-
lated incrementally, and thus more efficiently.

4.3. Heuristic improvements
In order to increase the performance of SA, we propose
three heuristic improvements based on the various types of
constraints in APG-O: song domain reduction, a two-level
neighborhood, and partial constraint voting.

4.3.1. Song domain reduction

Song domain reductionresembles a form of constraint prop-
agation to guarantee node consistency for unary constraints
used in constraint satisfaction methods [8]. To this end, we
denote a song domainMi of a positioni as the subset of the
music collection,Mi ⊆ M , that defines the possible songs
that are allowed at that position; for a playlistp, it should
hold thatpi ∈ Mi. By reducing the song domainsMi, we
can in this way trim the search space for our LS. If a posi-
tion is not over-constrained, the reduction is established by
removing all songs from a given song domain that do not
meet all unary constraints that are declared for the position
under consideration. We have developed different reduction
mechanisms for all four individual neighborhood structures.

4.3.2. Two-level neighborhood structure

The penalties of global constraints such ascardinality-
global andsum-globalconstraints are not affected by swap
moves; they do not depend on song order. In contrast, most
unary and binary constraints and their combinations into
global constraints do depend on song order.

Based on this observation, we introduce atwo-level
neighborhood, splitting the search into two procedures, that
are applied alternatingly. The first procedure consists of a
sequence ofβ replace, insert, and delete moves, for meet-
ing constraints that do not depend on song order. Next, a
sequence of swap moves is applied to put the songs in the
right order. For the latter, we employ a simple procedure,
callednon-deteriorating reordering(NDR), which applies
iterative improvement with a maximum ofγ swap moves.
In tests [4], we found 100 to be a good performing value for
bothβ andγ for a collection of 2,248 songs.

4.3.3. Partial constraint voting

Simply applying random moves at randomly chosen playlist
positions leads to an inadequate coverage of the restrictions
as posed by some global constraints, notably thecardinality-
global and thecount-globalconstraints. These constraints
need specific types of songs at specific positions. To this
end, we apply apartial constraint votingmechanism in

which constraints vote for or against a playlist position and a
song in a move. Every constraint can cast a positive vote for
a position with a song in a given solution, if it contributes
to its violation. On the other hand, a constraint can cast a
negative vote for a position with a song, it it helps in its
satisfaction. The votes from all constraints are tallied, and
a playlist position is chosen biased by these votes. So, a
position with many positive votes and a few negative votes
is more likely to be chosen than a position with fewer pos-
itive votes and more negative votes. If the replace or the
insert neighborhood was selected, we also have to vote for a
specific song to be added to the playlist. For efficiency rea-
sons, only the above-mentioned global constraints can vote
for songs. Again, the song votes are tallied and one song is
chosen, biased by the collected votes.

Though this voting mechanism is effective in direct-
ing constraint satisfaction, it is computationally intensive
in comparison to random selection of positions and songs.
Therefore, we limit its use to a fractionδ of the reselect
moves. In tests [4], we foundδ = 0.3 to be a good perform-
ing value for a collection of 2,248 songs.

4.3.4. Final algorithm

The adapted SA algorithm is depicted in Figure 1.

INITIALIZE p, t0, L0;
h := 0;
r := 0;
repeat

for l := 1 to Lh do
begin

if r < β then
begin

if δ > random[0, 1) then
GENERATE RANDOM p′ ∈ Nreselect(p)

else
GENERATE p′ ∈ Nreselect(p) BY VOTING;

if f(p′) ≤ f(p) or exp(f(p)−f(p′)
t

) > random[0, 1)
then p := p′;
r := r + 1

end
else begin

p := NDR(p, γ);
r := 0

end
end;
h := h + 1;
CALCULATE LENGTH Lh;
CALCULATE CONTROL th

until STOP CRITERION

Figure 1. The resulting algorithm for APG-O.

5. Evaluation
In performance tests, the algorithm was shown to be an im-
provement over a previously designed constraint satisfaction
(CS) algorithm on efficiency, scalability and playlist quality
(optimality). We used constraint sets that were inspired by

10 14 18 22 26 30
 0.1

 1

 10

 100

1000

CS

LS

playlist length

m
ea

n
ru

n
tim

e
(s

ec
s)

0 2 4 6 8

x 10
4

0

5

10

15

20

25

30

LS

CS

music collection size
10 20

0

2.5

5

7.5

10

LS

CS

playlist length

m
ea

n
ra

tin
g

sc
or

e

Figure 2. (a) Meanrun time over 10 runs as a function of playlist length for LS (local search) and CS (constraint satisfaction) using
a set of 15 global constraints. (b) Meanrun time over 10 runs as a function of music collection size for LS and CS using a set of 15
global constraints. (c) Meanrating scoreacross LS and CS and differentplaylist lengths. Cross-bars represent standard errors of the
mean.

previous user studies [9] and music collections ranging from
2,248 songs to 71,194 songs. In Figure 2 (a), we see that LS
runs shorter and less erratic in run time than CS does for a
set of 15 global constraints for different playlist lengths and
a collection of 2,248 songs. Ten runs of the test were per-
formed to arrive at a mean run time. The typical run time
of the algorithm is about 2 seconds on a PC platform for
playlists of at most 14 songs, a collection of about 2,000
songs, and various constraint sets. In Figure 2 (b), we see
a linear increase on run time for larger music collections
for LS generating playlists of 10 songs using the same set
of constraints. Its run time on a large music collection is
too high for particular interactive applications. CS did not
generate playlists for large music collections due to memory
insuffiency.

In a user evaluation, eighteen participants (22-41 years;
13 men, 4 women) were asked to rate on a scale of0 to 10
(extremely bad-good) 48 playlists in total of varying lengths
that were generated either by LS or CS using various con-
straint sets. As shown in Figure 2 (c), playlists generated by
LS were rated significantly higher than playlists generated
by CS (mean rating score for LS playlists: 7.7; mean rating
score for CS playlists: 6.5;F (1, 17) = 56.6, p < 0.001).
Also, we see that longer CS playlists were rated significantly
lower than smaller CS playlists, whereas this is not true for
LS playlists (F (1, 17) = 7.6, p < 0.05).

For a detailed description of the evaluation, we refer
to [4].

6. Conclusion
The algorithm has already been embedded in interactive mu-
sic prototype systems and services designed for consumer
electronic devices [9]. These systems open up completely
new methods for users to experience music by the art of
re-combining songs in various ways. Playlist generation is
also useful for automatic DJ-ing applications that require

that songs are first ordered on meter, tempo and key before
they are mixed one after the other. Online music sales ap-
plications can be easily augmented with a service to auto-
matically compile and download a personal album. Music
streaming and broadcasting can excel using on-the-fly gen-
eration of music programs allowing truly personal and inter-
active (Internet) radio and podcasting.

References

[1] M. Alghoniemy and A.H. Tewfik, “A Network Flow Model
for Playlist Generation”, In: Proceedings of the IEEE
International Conference on Multimedia and Expo 2001
(ICME2001), August 22 - 25, 2001, Tokyo, Japan.

[2] F. Pachet, P. Roy and D. Cazaly, “A Combinatorial Approach
to Content-based Music Selection”,IEEE Multimedia, 7, 1,
2000, 44-51.

[3] J.-J. Aucouturier and F. Pachet, “Scaling up Music Playlist
Generation”, In:Proceedings of the IEEE International Con-
ference on Multimedia and Expo 2002 (ICME2002), August
26 - 29, 2002, Lausanne, Switzerland.

[4] S. Pauws, W. Verhaegh and M. Vossen, “Playlist Generation
by Adapted Simulated Annealing”, In: Vasilakos, A. (Ed.),
Information Science: Special Issue on Ambient Intelligence,
2006.

[5] M.R. Garey and D.S. Johnson,Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, 1979, W.H.
Freeman and Company, New York.

[6] E.H.L. Aarts and J.K. Lenstra,Local Search in Combinato-
rial Optimization, 1997, Wiley.

[7] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization
by Simulated Annealing”,Science, 220, 4598, 1983, 671–
680.

[8] E.P.K. Tsang,Foundations of Constraint Satisfaction, Aca-
demic Press, 1993.

[9] S. Pauws and S. van de Wijdeven. “User Evaluation of a
New Interactive Playlist Generation Concept.” In:Proc.
Sixth International Conference on Music Information Re-
trieval (ISMIR2005), Reiss, J.D. & G.A. Wiggins (Eds.). 11-
15 September 2005, 638–643.

