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Abstract 
We propose a mid-level melody-based representation that 
incorporates melodic, rhythmic and structural aspects of a 
music signal and is useful for calculating audio similarity 
measures. Most current approaches to music similarity use 
either low-level signal features, such as MFCCs that 
mostly capture timbral characteristics of music and contain 
little semantic information, or require symbolic representa-
tions, which are difficult to obtain from audio signals. The 
proposed mid-level representation is our attempt to bridge 
the gap between audio and symbolic domains by providing 
an integrated melodic, rhythmic and structural representa-
tion of music signals. The representation is based on a set 
of melodic fragments extracted from prominent melodic 
lines, it is beat-synchronous, which makes it independent 
of tempo variations and contains information on repeti-
tions of short melodic phrases within the analyzed piece. 
We show how it can be calculated automatically from 
polyphonic audio signals and demonstrate its use for dis-
covering melodic similarities between songs. We present 
results obtained by using the representation for finding 
different interpretations of songs in a music collection. 

Keywords: music similarity, searching audio, melody-
based representation, mid-level representation 

1. Introduction 
Calculating music similarity is one of the key areas in 
music information retrieval, as it enables searching and 
organization of music collections. Although melody is a 
very important descriptor of (Western) music [1], querying 
audio collections by melody is still an elusive goal. Most 
current approaches to audio similarity, such as audio 
fingerprinting [2] or genre classification techniques [3] are 
based on low-level audio features. Audio fingerprinting 
techniques typically rely on spectral representations, which 
are processed to be resistant to various types of noise and 
are unique for each piece of music; a query results in a 
match only if the exact same piece of music resides in the 

queried database. Genre or mood classification techniques 
mostly rely on MFCC coefficients and other low-level 
descriptors, leading to timbre-based similarity measures.  

Query by melody is possible, if symbolic data are avail-
able [4]; for most recorded music this is not the case. Tran-
scription and melody extraction techniques are improving, 
but are still unreliable - the most successful MIREX’05 
melody extractor achieved ~70% accuracy [5]. Shwartz et 
al. [6] presented a system for querying audio collections by 
melody, but it requires a symbolic representation of the 
query and does not account for audio to audio matching. 

Mid-level representations are an attempt to reduce the 
semantic gap between low-level and symbolic 
representations by extracting some higher-level semantic 
features from music signals, while still avoiding symbols. 
Dixon et al. [7] introduced rhythmic templates that 
represent typical rhythmic patterns of a piece and may be 
used for calculating rhythmic similarity. Bello and Pickens 
[8] introduced a mid-level harmonic representation, based 
on chroma features and showed its usability for 
segmentation. 

Melody is an important descriptor of a piece of music 
and therefore very desirable for querying a music 
collection. For this purpose, we propose a mid-level 
melody-based representation, demonstrate how it can be 
used for calculating inter-song similarities and present 
results obtained on the task of finding different 
interpretations of a song in a music collection.  

2. Mid-level Melodic Representation 
In our proposed mid-level representation, we seek to 
combine melodic, rhythmic and structural aspects of a 
piece of music.  

2.1 Melody 
The melodic aspects of the representation stem from our 
approach to melody extraction. The approach is briefly 
summarised as follows (for full description, see [9]). First, 
spectral modelling synthesis (SMS) is used to extract 
partials from audio signal, which are then subjected to a 
psychoacoustic masking model. Predominant pitches are 
extracted from partials with an EM approach, which 
estimates the most likely pitches to have generated the 
observed series of partials. Using SMS partial tracking 
information, the found pitches are linked in time, resulting 
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in a series of pitch tracks, which are then filtered by 
removing short and muted tracks. We call this final set of 
pitch tracks melodic fragments, because they represent 
different parts of melodic lines (lead and accompaniment) 
in the analyzed piece. Each fragment has its start and end 
time, time-varying loudness and time-varying pitch. Due to 
the EM approach taken, in regions of audio where only 
one pitch is dominant, only a single melodic fragment will 
be found, while in regions where several pitches are 
competing for attention, several fragments will appear 
simultaneously. The resulting representation contains most 
parts of the main melodic line (~90% on our test set 
consisting of parts of MIREX’04 and ’05 melody 
extraction datasets) with additional fragments of other 
melodic lines, especially when lead is not present.  

2.2 Rhythm  
Events in a piece of music are not perceived in direct 
relation to time, but in relation to their place within a 
metric hierarchy, whose basic elements are beats. These in 
turn relate to time according to tempo and its variation 
within a piece. Calculating intra- and inter-piece 
similarities is difficult when tempo varies; dynamic 
programming approaches can be used to alleviate this 
problem [10]. Instead, we prefer to make our 
representation tempo-independent by using a beat tracker 
[11] to perform beat detection and then aligning the 
representation to the beat grid, thus making it beat-
synchronous. Beat boundaries are used to resample the 
representation with an averaging filter to 6 frames per beat, 
leading to a tempo-invariant melodic representation. The 
resampling rate was chosen experimentally; smaller values 
had a negative effect on performance, while larger values 
did not lead to improvements. In the process, we also 
resample the frequency axis to a half-tone scale, resulting 
in 24 values per octave. The coarse scale has been selected 
to reduce effects of vibrato or similar pitch fluctuations on 
the representation. We also wrap the frequency axis to the 
range of one octave, resulting in a pitch-class type of 
representation, thus sidestepping octave errors, which are 
quite common in the melody extraction procedure used. 

 
Figure 1. Mid-level melody-based representation of 12 beats 

of song Love is in the Air 

The resulting mid-level representation contains most 
parts of the main melodic line, together with some 
fragments of competing lines and is octave and tempo 
invariant. An example is given in Figure 1, which shows 
an excerpt from “Love is in the Air” (sung by J.P. Young). 
Melodic fragments belonging to lead vocals are visible in 
the beginning and middle sections, as well as several other 
fragments that mostly occur between vocal parts. 

2.3 Structure 
We infer the structure of a piece by calculating the self-
similarity matrix S(l) of the beat-synchronous melodic 
representation. Each element i,j of matrix S(l) is defined as: 
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bi represents a vertical slice of the beat-synchronous 
representation at beat position i (24 frequency bins by 6 
frames per beat). bi..i+l represents a sequence of slices b 
starting at beat i and ending at beat i+l; values for beat 
positions beyond the total number of beats n (i>n) are set 
to 0. d is a similarity measure;  after some experiments, we 
decided to use the cosine similarity measure [14], which 
performed roughly the same as symmetric KL distance or 
correlation. Since silence matches silence well, we also 
add a small amount of random noise to slices bi to avoid 
high similarity scores for regions of silence. S(l) is thus a 
square nxn matrix (n is the total number of beats) and 
contains similarities between all pairs of excerpts of length 
l beats taken from the representation.  

Parameter l controls the length of excerpts to be 
compared. l is estimated by calculating the self-similarity 
matrix S(l) with a sequence length of l=12 beats, 
accounting for 3/4 and 4/4 bars. Elements of the matrix 
above the main diagonal are then averaged across 
diagonals:  
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and autocorrelation of resulting vector d calculated. Peaks 
of the autocorrelation function correspond to typical gaps 
between repetitions of melodic patterns in the piece. The 
highest autocorrelation peak above 9 is taken as length l, 
so that compared sequences are at least 10 beats long. We 
chose this threshold experimentally, as we found that 
lengths smaller than 10 beats may contain too little 
information to be compared reliably. Typical values of 
parameter l are 16 beats for pieces in 4/4 and 12 or 24 
beats for 3/4 pieces.  

We also found that multiplying (element-wise) matrices 
calculated at different lengths l results in a significant 
noise reduction. We therefore calculate the final self-
similarity matrix S by combining matrices calculated with 
three different values of l (eq. 3). In addition, we apply 
filter F(s) to the resulting product. The filter is a square sxs 
matrix with diagonal elements equal to 1 and other 



elements equal to –1/(s-1), thus emphasizing diagonals and 
suppressing off-diagonal repetitions. This reduces the 
effect of long notes that produce square blocks in the 
matrix. The self-similarity matrix is calculated as: 

 ( )( ) (0.75 ) (0.5 ) (0.25 )l l l l= ∗S S S S Fi i  (3) 

where i  denotes element-wise matrix multiplication and 
∗  the convolution operator. The left side of Figure 2 
shows the matrix calculated for song “Love is in the Air”. 
Due to beat-synchronous melodic representation and long 
comparison sequence (l=16), the figure clearly reflects the 
structure of the piece. Diagonals indicate repeated sections 
and reveal the structure of the piece to be 
aaBaaBCaaBaaBCC. The structure can be derived from 
the top part of the matrix, as indicated by overlaid dotted 
lines. If we compare the resulting matrix to self-similarity 
matrices calculated from MFCC or chroma features (i.e. 
[13]), the amount of noise is greatly reduced and structure 
revealed in places that may be ignored by these approaches 
due to different timbres or harmonies. We contribute this 
difference to a more musically meaningful melody-based 
representation and longer sequences used for self-
similarity calculation. Although explicit segmentation is 
not our goal in this research, obtained self-similarity 
matrices show promise that the mid-level representation 
could also be useful for segmentation. We use self-
similarity information for extraction of melodic patterns as 
described in the next section. 

3. Calculating Similarity 
Our goal is to obtain a representation that would 
emphasize melodic aspects of a given piece and would be 
useful for calculating melodic similarity of different 
pieces, giving high scores for pieces with similar melody 
even if they have different tempi, different instrumentation 

or different arrangements. To assess whether the proposed 
mid-level representation is suitable for such tasks, we 
tested it within a simple music retrieval system, based on 
comparisons of melodic patterns extracted from each song.  

3.1 Finding Melodic Patterns 
We define melodic patterns as parts of melody that are 
repeated several times in a song. They may be parts of a 
chorus or verse or entire chorus/verse segments. We use 
these patterns as a summarized description of a song and 
use them for calculating similarity. The idea of using 
patterns to characterize music is not new; Paulus and 
Klapuri [12] used rhythmic patterns to measure similarity 
and Dixon et al. [7] to characterize ballroom dances.  

The algorithm for extracting melodic patterns follows 
an approach similar to segmentation and chorus extraction 
methods, such as Goto’s RefraiD algorithm [13]. It is 
based on the self-similarity matrix, calculated as described 
previously. Patterns are extracted from the matrix by a 
simple greedy approach, which can be outlined as:  

1. find the most repeated melodic pattern. We first sum 
the self-similarity matrix across one dimension, 
resulting in a vector with high values at beat positions 
that are often repeated. We then smooth this vector with 
a Gaussian filter. Position of the highest peak in the 
resulting smoothed vector is taken to lie within the most 
repeated pattern. The first and last beat of the pattern 
are then searched for by searching the vector from the 
chosen peak forward and backward until the first local 
minima before and after the peak are met. Beat 
positions of the minima are taken to represent the start 
and end position of the most repeated pattern; 

2. find all salient repetitions of this pattern in the matrix. 

          
Figure 2. Self-similarity matrix calculated from the beat-synchronous representation of Love is in the Air with structure  

indicated (left). For comparison: self-similarity matrix calculated from chroma features 



3. remove the pattern and all found repetitions from the 
self-similarity matrix and add them to the list of found 
patterns, if more than one repetition was found. 

4. repeat steps 1-3 until most of the initial matrix is 
removed (we use a fixed threshold of 90%).  

The result is a set of melodic patterns (typically 2-4 on our 
database consisting of mostly pop/rock songs). Each 
pattern is characterized by its start and end beat locations 
and a list of repetitions. We also calculate the median mid-
level melodic representation of each pattern and all of its 
repetitions, which keeps only the most salient features 
(melody) and removes some background accompaniment 
that may vary within the piece. 

3.2 Compensating for Difference in Keys 
If we calculate melodic patterns of all songs in a song 
collection, we can use the obtained patterns to calculate 
each song’s similarity to all other songs in the collection. 
This can be done by comparing the median mid-level 
representation of each pattern of a song to representations 
of each melodic pattern of the compared song. To perform 
the comparison, we first need to account for possible 
differences in keys of both songs.  

A key profile of each song is first calculated. We start 
by summing the entire mid-level representation of a song 
across time, resulting in the song’s pitch profile. We 
calculate the dot product of the obtained pitch profile with 
Bayesian key profiles [15] for all 24 major and minor 
keys, resulting in the song’s key profile. When we 
compare two songs, key profiles of both songs are 
correlated in all shifted positions and the best match is 
taken to represent the difference in key between the two 
songs. This difference is then compensated for by a 
circular shift of melodic patterns of one of the songs. If we 
assume that two compared songs have similar melody, 
such procedure leads to correct key compensation most of 
the time. 

3.3 Calculating Similarity 
After key compensation, comparison of a pair of melodic 
patterns is straightforward. Since patterns will not usually 
be time-aligned and of equal size, similarity is calculated 
by shifting the shorter pattern beat-by-beat over the length 
of the longer pattern and calculating similarity of each 
shifted position.  We again use the cosine similarity 
measure, the same as used for the self-similarity matrix 
calculation. The highest similarity of all shifted positions is 
taken as the pattern similarity score. After similarities of 
all pairs of patterns of two songs have been calculated, the 
mean similarity of n best matching patterns is taken as 
similarity of the two songs. Best value for n was 
experimentally determined to be 2.  

4. Experiment and Discussion 
The described approach to calculating similarity was tested 
for retrieval of different performances of a song from a 
larger song collection. For this task, we first collected a set 
of different performances of 8 songs, totaling 36 songs. 
Each song had at least four different versions in this set, 
either by the same or by different performers. Beat 
tracking of songs was manually checked for errors and 
corrected. The list of songs can be found at 
http://lgm.fri.uni-lj.si/~matic/similarity. We injected the 36 
songs into a larger collection of 1820 songs of similar, 
mostly pop and rock genres. The task was to retrieve the 
different performances of a given song from the collection.  

In the experiment, we compared two different 
representations of music: the proposed melody-based 
representation and a representation based on chroma 
feature vectors [13]. With both, we used the same 
locations of melodic patterns and the same key 
compensation technique, only the actual representations of 
melodic patterns varied. Evaluation was performed by 
considering each of the known 36 pieces as a query and 
calculating its similarity to all other pieces in the 
collection. Table 1 lists 11 point precision averages and 
percentages of hits in top 5 returned songs for all 36 
queries and separately for each of the songs used in 
queries. 11 point precision averages are often used for 
MIR system evaluation [4] and are calculated as averages 
of precision at recall levels 0%, 10%,...,100%. Results for 
both compared representations are given in columns 3 and 
4. Column 5 lists retrieval results obtained with a 
similarity measure calculated as a sum of similarity 
measures of both approaches, resulting in a new combined 
melody+chroma similarity measure. Number of song 
versions and performers is given in column 2 (n.v./n.p. - 
see also the list of songs at http://lgm.fri.uni 
lj.si/~matic/similarity). Note that the queried song was 
always returned first in the list of hits and was therefore 
excluded when calculating 11 point precision averages and 
top 5 scores. 

Although we used a very simple method for calculating 
similarity, we achieved solid retrieval results with a 
number of songs (1,2,3,7 in Table 1), even though 
performers and arrangements differed (i.e. Mamas and 
Papas, Dean Martin, Beautiful South and Ella Fitzgerald 
for song 3). This shows the robustness of the presented 
representation to changes in instrumentation.  

If songs differ a lot in melody or rhythm, the presented 
approach fails completely (songs 4 and 8). This has less to 
do with the mid-level representation than with the simple 
approach taken to extracting melodic patterns and 
comparing songs; a dynamic programming approach that 
would allow for rhythmic variations might lead to better 
results. Other examples of false negatives are found in 
songs with several concurrent melodic lines (such as the 



baroque interpretation of song 1), where the mid-level 
representation either includes too many melodic lines, or 
picks out the wrong ones. The segmentation procedure is 
another source of errors (i.e. song 2 by Celine Dion or 
interpretations of song 6). When the found melodic 
patterns are not at least approximately time-aligned 
between interpretations, songs are not found to be similar, 
even though their melodies and rhythms (and consequently 
the beat-synchronous melodic representation) are similar. 
A somewhat more elaborate segment extraction procedure 
could be the solution for this type of errors. 

We have also found the existence of the so-called hubs 
[16], which are defined as songs that occur frequently as a 
false positive according to a given similarity measure. 
Most of these songs turned out to be a problem for either 
our melody extraction or beat detection algorithms. This 
led to poor mid-level representations and unrepresentative 
segments (few segments, short segments or segments full 
of melodic lines) that appear to match well with segments 
of most songs. Otherwise, false positives were mostly due 
to either errors in extraction of melodic lines (too many 
lines, incorrect lines) or beat tracking errors (incorrect 
resampling and segment extraction).  

Results obtained by using chroma feature vectors 
indicate that these work well when performances are by 
the same performer or have very similar arrangements, 
such as with song 1, where three of four performances are 
by The Beatles and also for song 6, where arrangements 
are very similar. In such cases, results are comparable or 
better than by using the melody-based representation. With 
different performers and arrangements, however, chroma 
features lag behind due to their greater dependence on 
arrangements in comparison with the proposed 
representation. We have also made an experiment by 
summing similarity scores of both representations into a 

combined similarity score, which additionally improved 
retrieval accuracy (Table 1, column 5).  

We should also comment on the possible bias 
introduced by errors of the beat tracking algorithm that 
was used to automatically extract beat positions in songs 
from the database (for the queried songs, beat positions 
were manually checked for errors and corrected). 
Although it is hard to estimate how errors in beat tracking 
affect our results, inspection of false positives shows that 
these are often caused by incorrect beat tracking, so we 
could speculate that beat tracking errors affect false 
positives as well as true negatives and do not introduce a 
large positive or negative bias into the presented results. 

5. Conclusion and Further Work 
We described a novel mid-level representation that 
integrates melodic, rhythmic and structural aspects of a 
music signal. We described its use for calculating melodic 
similarity in audio collections. Results show that the 
proposed representation provides a good basis for tasks 
such as retrieval of different interpretations of a song from 
a song collection even if interpretations are by different 
artists and have different arrangements. We acknowledge 
that our tests were made on a small database, but the 
retrieval method used was also very primitive and we 
argue that better techniques, such as dynamic 
programming or HMM modeling should lead to good 
results also on large databases. We also plan to augment 
the melodic representation with harmonic information [8]; 
a combined approach should lead to additional 
improvements, as is indicated by better results achieved 
with the combined melody+chroma similarity measure. 
The proposed representation also seems to hold promise 
for segmentation and summarization, which is another set 
of tasks we plan to pursue further. 

Table 1. 11 point precision averages and percentages of hits in top 5 returned songs for  
melody-based representation, chroma representation and a combined approach 

  melody chroma combined 

 n.v ./ n.p. 11pt. 
prec 

% 
 top 5 

11pt. 
prec 

% 
 top 5 

11pt. 
prec 

%  
 top 5 

Mean precision and % of hits  
in top 5 for all queries  0.20 25 0.15 19 0.22 27 

1. A hard day’s night 4 / 2 0.35 33 0.39 5 0.40 42 
2. All by myself 4 / 4 0.33 42 0.12 17 0.33 42 

3. Dream a little dream  5 / 4 0.44 55 0.28 35 0.51 5 

4. Georgia on my mind 4 / 4 0 0 0 0 0 0 

5. Goodnight Irene 4 / 4 0.13 25 0 0 0.03 8 

6. Knockin’ on heaven’s door 5 / 5 0.02 0 0.20 35 0.20  35 

7. Love is in the air 5 / 4 0.33 4 0.18 15 0.32  35 

8. Summertime 5 / 5 0.01 0 0  0 0 0 
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