
A Mid-level Melody-based Representation for Calculating Audio Similarity
Matija Marolt

University of Ljubljana
Trzaska 25

1000 Ljubljana, Slovenia
matija.marolt@fri.uni-lj.si

Abstract
We propose a mid-level melody-based representation that
incorporates melodic, rhythmic and structural aspects of a
music signal and is useful for calculating audio similarity
measures. Most current approaches to music similarity use
either low-level signal features, such as MFCCs that
mostly capture timbral characteristics of music and contain
little semantic information, or require symbolic representa-
tions, which are difficult to obtain from audio signals. The
proposed mid-level representation is our attempt to bridge
the gap between audio and symbolic domains by providing
an integrated melodic, rhythmic and structural representa-
tion of music signals. The representation is based on a set
of melodic fragments extracted from prominent melodic
lines, it is beat-synchronous, which makes it independent
of tempo variations and contains information on repeti-
tions of short melodic phrases within the analyzed piece.
We show how it can be calculated automatically from
polyphonic audio signals and demonstrate its use for dis-
covering melodic similarities between songs. We present
results obtained by using the representation for finding
different interpretations of songs in a music collection.

Keywords: music similarity, searching audio, melody-
based representation, mid-level representation

1. Introduction
Calculating music similarity is one of the key areas in
music information retrieval, as it enables searching and
organization of music collections. Although melody is a
very important descriptor of (Western) music [1], querying
audio collections by melody is still an elusive goal. Most
current approaches to audio similarity, such as audio
fingerprinting [2] or genre classification techniques [3] are
based on low-level audio features. Audio fingerprinting
techniques typically rely on spectral representations, which
are processed to be resistant to various types of noise and
are unique for each piece of music; a query results in a
match only if the exact same piece of music resides in the

queried database. Genre or mood classification techniques
mostly rely on MFCC coefficients and other low-level
descriptors, leading to timbre-based similarity measures.

Query by melody is possible, if symbolic data are avail-
able [4]; for most recorded music this is not the case. Tran-
scription and melody extraction techniques are improving,
but are still unreliable - the most successful MIREX’05
melody extractor achieved ~70% accuracy [5]. Shwartz et
al. [6] presented a system for querying audio collections by
melody, but it requires a symbolic representation of the
query and does not account for audio to audio matching.

Mid-level representations are an attempt to reduce the
semantic gap between low-level and symbolic
representations by extracting some higher-level semantic
features from music signals, while still avoiding symbols.
Dixon et al. [7] introduced rhythmic templates that
represent typical rhythmic patterns of a piece and may be
used for calculating rhythmic similarity. Bello and Pickens
[8] introduced a mid-level harmonic representation, based
on chroma features and showed its usability for
segmentation.

Melody is an important descriptor of a piece of music
and therefore very desirable for querying a music
collection. For this purpose, we propose a mid-level
melody-based representation, demonstrate how it can be
used for calculating inter-song similarities and present
results obtained on the task of finding different
interpretations of a song in a music collection.

2. Mid-level Melodic Representation
In our proposed mid-level representation, we seek to
combine melodic, rhythmic and structural aspects of a
piece of music.

2.1 Melody
The melodic aspects of the representation stem from our
approach to melody extraction. The approach is briefly
summarised as follows (for full description, see [9]). First,
spectral modelling synthesis (SMS) is used to extract
partials from audio signal, which are then subjected to a
psychoacoustic masking model. Predominant pitches are
extracted from partials with an EM approach, which
estimates the most likely pitches to have generated the
observed series of partials. Using SMS partial tracking
information, the found pitches are linked in time, resulting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2006 University of Victoria

in a series of pitch tracks, which are then filtered by
removing short and muted tracks. We call this final set of
pitch tracks melodic fragments, because they represent
different parts of melodic lines (lead and accompaniment)
in the analyzed piece. Each fragment has its start and end
time, time-varying loudness and time-varying pitch. Due to
the EM approach taken, in regions of audio where only
one pitch is dominant, only a single melodic fragment will
be found, while in regions where several pitches are
competing for attention, several fragments will appear
simultaneously. The resulting representation contains most
parts of the main melodic line (~90% on our test set
consisting of parts of MIREX’04 and ’05 melody
extraction datasets) with additional fragments of other
melodic lines, especially when lead is not present.

2.2 Rhythm
Events in a piece of music are not perceived in direct
relation to time, but in relation to their place within a
metric hierarchy, whose basic elements are beats. These in
turn relate to time according to tempo and its variation
within a piece. Calculating intra- and inter-piece
similarities is difficult when tempo varies; dynamic
programming approaches can be used to alleviate this
problem [10]. Instead, we prefer to make our
representation tempo-independent by using a beat tracker
[11] to perform beat detection and then aligning the
representation to the beat grid, thus making it beat-
synchronous. Beat boundaries are used to resample the
representation with an averaging filter to 6 frames per beat,
leading to a tempo-invariant melodic representation. The
resampling rate was chosen experimentally; smaller values
had a negative effect on performance, while larger values
did not lead to improvements. In the process, we also
resample the frequency axis to a half-tone scale, resulting
in 24 values per octave. The coarse scale has been selected
to reduce effects of vibrato or similar pitch fluctuations on
the representation. We also wrap the frequency axis to the
range of one octave, resulting in a pitch-class type of
representation, thus sidestepping octave errors, which are
quite common in the melody extraction procedure used.

Figure 1. Mid-level melody-based representation of 12 beats

of song Love is in the Air

The resulting mid-level representation contains most
parts of the main melodic line, together with some
fragments of competing lines and is octave and tempo
invariant. An example is given in Figure 1, which shows
an excerpt from “Love is in the Air” (sung by J.P. Young).
Melodic fragments belonging to lead vocals are visible in
the beginning and middle sections, as well as several other
fragments that mostly occur between vocal parts.

2.3 Structure
We infer the structure of a piece by calculating the self-
similarity matrix S(l) of the beat-synchronous melodic
representation. Each element i,j of matrix S(l) is defined as:

 ()
.. ..(,) 1... , 1..l

ij i i l j j ls d b b i n j n+ += = = . (1)

bi represents a vertical slice of the beat-synchronous
representation at beat position i (24 frequency bins by 6
frames per beat). bi..i+l represents a sequence of slices b
starting at beat i and ending at beat i+l; values for beat
positions beyond the total number of beats n (i>n) are set
to 0. d is a similarity measure; after some experiments, we
decided to use the cosine similarity measure [14], which
performed roughly the same as symmetric KL distance or
correlation. Since silence matches silence well, we also
add a small amount of random noise to slices bi to avoid
high similarity scores for regions of silence. S(l) is thus a
square nxn matrix (n is the total number of beats) and
contains similarities between all pairs of excerpts of length
l beats taken from the representation.

Parameter l controls the length of excerpts to be
compared. l is estimated by calculating the self-similarity
matrix S(l) with a sequence length of l=12 beats,
accounting for 3/4 and 4/4 bars. Elements of the matrix
above the main diagonal are then averaged across
diagonals:

 ,
1

1 1.. 1
n k

k i i k
i

d s k n
n k

−

+
=

= = −
− ∑ (2)

and autocorrelation of resulting vector d calculated. Peaks
of the autocorrelation function correspond to typical gaps
between repetitions of melodic patterns in the piece. The
highest autocorrelation peak above 9 is taken as length l,
so that compared sequences are at least 10 beats long. We
chose this threshold experimentally, as we found that
lengths smaller than 10 beats may contain too little
information to be compared reliably. Typical values of
parameter l are 16 beats for pieces in 4/4 and 12 or 24
beats for 3/4 pieces.

We also found that multiplying (element-wise) matrices
calculated at different lengths l results in a significant
noise reduction. We therefore calculate the final self-
similarity matrix S by combining matrices calculated with
three different values of l (eq. 3). In addition, we apply
filter F(s) to the resulting product. The filter is a square sxs
matrix with diagonal elements equal to 1 and other

elements equal to –1/(s-1), thus emphasizing diagonals and
suppressing off-diagonal repetitions. This reduces the
effect of long notes that produce square blocks in the
matrix. The self-similarity matrix is calculated as:

 ()() (0.75) (0.5) (0.25)l l l l= ∗S S S S Fi i (3)

where i denotes element-wise matrix multiplication and
∗ the convolution operator. The left side of Figure 2
shows the matrix calculated for song “Love is in the Air”.
Due to beat-synchronous melodic representation and long
comparison sequence (l=16), the figure clearly reflects the
structure of the piece. Diagonals indicate repeated sections
and reveal the structure of the piece to be
aaBaaBCaaBaaBCC. The structure can be derived from
the top part of the matrix, as indicated by overlaid dotted
lines. If we compare the resulting matrix to self-similarity
matrices calculated from MFCC or chroma features (i.e.
[13]), the amount of noise is greatly reduced and structure
revealed in places that may be ignored by these approaches
due to different timbres or harmonies. We contribute this
difference to a more musically meaningful melody-based
representation and longer sequences used for self-
similarity calculation. Although explicit segmentation is
not our goal in this research, obtained self-similarity
matrices show promise that the mid-level representation
could also be useful for segmentation. We use self-
similarity information for extraction of melodic patterns as
described in the next section.

3. Calculating Similarity
Our goal is to obtain a representation that would
emphasize melodic aspects of a given piece and would be
useful for calculating melodic similarity of different
pieces, giving high scores for pieces with similar melody
even if they have different tempi, different instrumentation

or different arrangements. To assess whether the proposed
mid-level representation is suitable for such tasks, we
tested it within a simple music retrieval system, based on
comparisons of melodic patterns extracted from each song.

3.1 Finding Melodic Patterns
We define melodic patterns as parts of melody that are
repeated several times in a song. They may be parts of a
chorus or verse or entire chorus/verse segments. We use
these patterns as a summarized description of a song and
use them for calculating similarity. The idea of using
patterns to characterize music is not new; Paulus and
Klapuri [12] used rhythmic patterns to measure similarity
and Dixon et al. [7] to characterize ballroom dances.

The algorithm for extracting melodic patterns follows
an approach similar to segmentation and chorus extraction
methods, such as Goto’s RefraiD algorithm [13]. It is
based on the self-similarity matrix, calculated as described
previously. Patterns are extracted from the matrix by a
simple greedy approach, which can be outlined as:

1. find the most repeated melodic pattern. We first sum
the self-similarity matrix across one dimension,
resulting in a vector with high values at beat positions
that are often repeated. We then smooth this vector with
a Gaussian filter. Position of the highest peak in the
resulting smoothed vector is taken to lie within the most
repeated pattern. The first and last beat of the pattern
are then searched for by searching the vector from the
chosen peak forward and backward until the first local
minima before and after the peak are met. Beat
positions of the minima are taken to represent the start
and end position of the most repeated pattern;

2. find all salient repetitions of this pattern in the matrix.

Figure 2. Self-similarity matrix calculated from the beat-synchronous representation of Love is in the Air with structure

indicated (left). For comparison: self-similarity matrix calculated from chroma features

3. remove the pattern and all found repetitions from the
self-similarity matrix and add them to the list of found
patterns, if more than one repetition was found.

4. repeat steps 1-3 until most of the initial matrix is
removed (we use a fixed threshold of 90%).

The result is a set of melodic patterns (typically 2-4 on our
database consisting of mostly pop/rock songs). Each
pattern is characterized by its start and end beat locations
and a list of repetitions. We also calculate the median mid-
level melodic representation of each pattern and all of its
repetitions, which keeps only the most salient features
(melody) and removes some background accompaniment
that may vary within the piece.

3.2 Compensating for Difference in Keys
If we calculate melodic patterns of all songs in a song
collection, we can use the obtained patterns to calculate
each song’s similarity to all other songs in the collection.
This can be done by comparing the median mid-level
representation of each pattern of a song to representations
of each melodic pattern of the compared song. To perform
the comparison, we first need to account for possible
differences in keys of both songs.

A key profile of each song is first calculated. We start
by summing the entire mid-level representation of a song
across time, resulting in the song’s pitch profile. We
calculate the dot product of the obtained pitch profile with
Bayesian key profiles [15] for all 24 major and minor
keys, resulting in the song’s key profile. When we
compare two songs, key profiles of both songs are
correlated in all shifted positions and the best match is
taken to represent the difference in key between the two
songs. This difference is then compensated for by a
circular shift of melodic patterns of one of the songs. If we
assume that two compared songs have similar melody,
such procedure leads to correct key compensation most of
the time.

3.3 Calculating Similarity
After key compensation, comparison of a pair of melodic
patterns is straightforward. Since patterns will not usually
be time-aligned and of equal size, similarity is calculated
by shifting the shorter pattern beat-by-beat over the length
of the longer pattern and calculating similarity of each
shifted position. We again use the cosine similarity
measure, the same as used for the self-similarity matrix
calculation. The highest similarity of all shifted positions is
taken as the pattern similarity score. After similarities of
all pairs of patterns of two songs have been calculated, the
mean similarity of n best matching patterns is taken as
similarity of the two songs. Best value for n was
experimentally determined to be 2.

4. Experiment and Discussion
The described approach to calculating similarity was tested
for retrieval of different performances of a song from a
larger song collection. For this task, we first collected a set
of different performances of 8 songs, totaling 36 songs.
Each song had at least four different versions in this set,
either by the same or by different performers. Beat
tracking of songs was manually checked for errors and
corrected. The list of songs can be found at
http://lgm.fri.uni-lj.si/~matic/similarity. We injected the 36
songs into a larger collection of 1820 songs of similar,
mostly pop and rock genres. The task was to retrieve the
different performances of a given song from the collection.

In the experiment, we compared two different
representations of music: the proposed melody-based
representation and a representation based on chroma
feature vectors [13]. With both, we used the same
locations of melodic patterns and the same key
compensation technique, only the actual representations of
melodic patterns varied. Evaluation was performed by
considering each of the known 36 pieces as a query and
calculating its similarity to all other pieces in the
collection. Table 1 lists 11 point precision averages and
percentages of hits in top 5 returned songs for all 36
queries and separately for each of the songs used in
queries. 11 point precision averages are often used for
MIR system evaluation [4] and are calculated as averages
of precision at recall levels 0%, 10%,...,100%. Results for
both compared representations are given in columns 3 and
4. Column 5 lists retrieval results obtained with a
similarity measure calculated as a sum of similarity
measures of both approaches, resulting in a new combined
melody+chroma similarity measure. Number of song
versions and performers is given in column 2 (n.v./n.p. -
see also the list of songs at http://lgm.fri.uni
lj.si/~matic/similarity). Note that the queried song was
always returned first in the list of hits and was therefore
excluded when calculating 11 point precision averages and
top 5 scores.

Although we used a very simple method for calculating
similarity, we achieved solid retrieval results with a
number of songs (1,2,3,7 in Table 1), even though
performers and arrangements differed (i.e. Mamas and
Papas, Dean Martin, Beautiful South and Ella Fitzgerald
for song 3). This shows the robustness of the presented
representation to changes in instrumentation.

If songs differ a lot in melody or rhythm, the presented
approach fails completely (songs 4 and 8). This has less to
do with the mid-level representation than with the simple
approach taken to extracting melodic patterns and
comparing songs; a dynamic programming approach that
would allow for rhythmic variations might lead to better
results. Other examples of false negatives are found in
songs with several concurrent melodic lines (such as the

baroque interpretation of song 1), where the mid-level
representation either includes too many melodic lines, or
picks out the wrong ones. The segmentation procedure is
another source of errors (i.e. song 2 by Celine Dion or
interpretations of song 6). When the found melodic
patterns are not at least approximately time-aligned
between interpretations, songs are not found to be similar,
even though their melodies and rhythms (and consequently
the beat-synchronous melodic representation) are similar.
A somewhat more elaborate segment extraction procedure
could be the solution for this type of errors.

We have also found the existence of the so-called hubs
[16], which are defined as songs that occur frequently as a
false positive according to a given similarity measure.
Most of these songs turned out to be a problem for either
our melody extraction or beat detection algorithms. This
led to poor mid-level representations and unrepresentative
segments (few segments, short segments or segments full
of melodic lines) that appear to match well with segments
of most songs. Otherwise, false positives were mostly due
to either errors in extraction of melodic lines (too many
lines, incorrect lines) or beat tracking errors (incorrect
resampling and segment extraction).

Results obtained by using chroma feature vectors
indicate that these work well when performances are by
the same performer or have very similar arrangements,
such as with song 1, where three of four performances are
by The Beatles and also for song 6, where arrangements
are very similar. In such cases, results are comparable or
better than by using the melody-based representation. With
different performers and arrangements, however, chroma
features lag behind due to their greater dependence on
arrangements in comparison with the proposed
representation. We have also made an experiment by
summing similarity scores of both representations into a

combined similarity score, which additionally improved
retrieval accuracy (Table 1, column 5).

We should also comment on the possible bias
introduced by errors of the beat tracking algorithm that
was used to automatically extract beat positions in songs
from the database (for the queried songs, beat positions
were manually checked for errors and corrected).
Although it is hard to estimate how errors in beat tracking
affect our results, inspection of false positives shows that
these are often caused by incorrect beat tracking, so we
could speculate that beat tracking errors affect false
positives as well as true negatives and do not introduce a
large positive or negative bias into the presented results.

5. Conclusion and Further Work
We described a novel mid-level representation that
integrates melodic, rhythmic and structural aspects of a
music signal. We described its use for calculating melodic
similarity in audio collections. Results show that the
proposed representation provides a good basis for tasks
such as retrieval of different interpretations of a song from
a song collection even if interpretations are by different
artists and have different arrangements. We acknowledge
that our tests were made on a small database, but the
retrieval method used was also very primitive and we
argue that better techniques, such as dynamic
programming or HMM modeling should lead to good
results also on large databases. We also plan to augment
the melodic representation with harmonic information [8];
a combined approach should lead to additional
improvements, as is indicated by better results achieved
with the combined melody+chroma similarity measure.
The proposed representation also seems to hold promise
for segmentation and summarization, which is another set
of tasks we plan to pursue further.

Table 1. 11 point precision averages and percentages of hits in top 5 returned songs for
melody-based representation, chroma representation and a combined approach

 melody chroma combined

 n.v ./ n.p. 11pt.
prec

%
 top 5

11pt.
prec

%
 top 5

11pt.
prec

%
 top 5

Mean precision and % of hits
in top 5 for all queries 0.20 25 0.15 19 0.22 27

1. A hard day’s night 4 / 2 0.35 33 0.39 5 0.40 42
2. All by myself 4 / 4 0.33 42 0.12 17 0.33 42

3. Dream a little dream 5 / 4 0.44 55 0.28 35 0.51 5

4. Georgia on my mind 4 / 4 0 0 0 0 0 0

5. Goodnight Irene 4 / 4 0.13 25 0 0 0.03 8

6. Knockin’ on heaven’s door 5 / 5 0.02 0 0.20 35 0.20 35

7. Love is in the air 5 / 4 0.33 4 0.18 15 0.32 35

8. Summertime 5 / 5 0.01 0 0 0 0 0

6. Acknowledgments
This work was supported by an International Short Visit
grant from the Royal Society that enabled the author to
spend six weeks at the Centre for Digital Music, Queen
Mary, University of London. I would like to thank Dr.
Juan Bello and Dr. Mark Plumbley for invitation, their
ideas and support during the visit.

References
[1] E. Selfridge-Field. “Conceptual and Representational

Issues in Melodic Comparison,” in Melodic Similarity:
Concepts, Procedures, and Applications, MIT Press, MA,
1998.

[2] J. Haitsma, T. Kalker. “A Highly Robust Audio
Fingerprinting System,” in ISMIR 2002, Proc., 2002.

[3] E. Pampalk, S. Dixon, and G. Widmer. “Exploring Music
Collections by Browsing Different Views,” CMJ, Vol. 28,
No. 2, pp 49-62, 2004.

[4] A.L. Uitdenbogerd. “Music Information Retrieval Techn-
ology,” Ph.D. Thesis, RMIT, 2002.

[5] “MIREX 2005 - 1st Annual Music Information Retrieval
Evaluation eXchange,”, [Web site] 2005, Available:
http://www.music-ir.org/mirex2005/index.php/Main_Page

[6] S. Shwartz, S. Dubnov, N. Friedman, Y. Singer. “Robust
Temporal and Spectral Modeling for Query By Melody,”
Proc. ACM SIGIR*02, Tampere, Finland, 2002.

[7] S. Dixon, F. Gouyon, G. Widmer, “Towards
Characterization of Music via Rhythmic Patterns,” in
ISMIR 2004 Proc., 2004.

[8] J.P. Bello, J. Pickens. “A Robust Mid-level Representation
for Harmonic Content in Music Signals,” in ISMIR 2005,
Proc. London, UK. September 2005.

[9] M. Marolt. “Audio Melody Extraction Based on Timbral
Similarity of Melodic Fragments," in Proceedings Eurocon
2005, Belgrade, 2005.

[10] R.J. McNab, L.A. Smith, I.H. Witten, C.L. Henderson, S.J.
Cunningham. “Towards the digital music library: Tune
retrieval from acoustic input,” Proceedings of Digital
Libraries '96. ACM, 1996.

[11] M. E. P. Davies and M. D. Plumbley. “Beat tracking with a
two state model,” in IEEE ICASSP Proc., Philadelphia,
Penn., USA, 2005.

[12] J. Paulus, A. Klapuri. “Measuring the similarity of
rhythmic patterns,” in ISMIR 2002 Proc., 2002.

[13] M. Goto. “A chorus-section detecting method for musical
audio signals,” ICASSP 2003 Proc., 2003.

[14] J. Foote. “Visualizing music and audio using self-
similarity,” Proc. ACM international conference on
Multimedia, 1999.

[15] D. Temperley. “A Bayesian Key-Finding Algorithm,” in
Music and Artificial Intelligence, Springer, 2002.

[16] J.J. Aucouturier. “Ten Experiments on the Modelling of
Polyphonic Timbre,” Ph.D. Thesis, L’Universite Paris 6,
2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

