Muugle: A Modular Music Information Retrieval Framework

Martijn Bosma, Remco C. Veltkamp, Frans Wiering
Utrecht University
Padualaan 14, De Uithof

3584 CH Utrecht, The Netherlands
{mbosma, remco.veltkamp, frans.wiering}@cs.uu.nl

Abstract
Muugle (Musical Utrecht University Global Lookup En-
gine) is a modular framework that allows the comparison of
different MIR techniques and usability studies. A system
overview and a discussion of a pilot usability experiment
are given. A demo version of the framework can be found
on http://give-lab.cs.uu.nl/muugle.

Keywords: Music Information Retrieval, Framework

1. Introduction

Recently, many MIR systems have been developed with many
differences between them [7]. For example, the representa-
tion of the music data on which they operate varies and the
collections on which they are tested are different. Not all
systems handle polyphonic data and some ignore note dura-
tions. They thus operate under different circumstances. To
make a methodical comparison of their performance pos-
sible, the underlying techniques of these systems need to
operate in the same framework.

Frameworks such as RUBATO [5] and M2K [3] are com-
ponent based, which in principle makes them suitable for the
comparison of different techniques. However, RUBATO is
designed for the generation of performance data from score
and not for MIR purposes. Therefore it contains no match-
ing components. M2K is mainly a development environ-
ments for the rapid prototyping of MIR systems. In [4] an
experimentation framework for comparing similarity algo-
rithms is described. However, this system and M2K are not
designed as frameworks for usability experiments.

To our knowledge, there is still no framework that allows
the comparison of different feature extraction and similarity
methods. Our aim with Muugle (Musical Utrecht University
Global Lookup Engine) is to provide such a framework.

2. Architecture

A retrieval process starts with the query formulation in the
user interface and it leads to the presentation of the most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

(© 2006 University of Victoria

. 4,« Feature L
Music Features
@ "o ‘7

Index
Construction

Index
Structure

IDs
Result Query
Presentation Features

Guy K\
Quew_ (Notation/ ‘,(Featur_e
Formulation Audio) Extraction

Figure 1. Overview of the Muugle-system architecture.

similar music present in the database. Figure 1 shows how
this process is modelled in the architecture of the Muugle
framework. The arrows in the diagram represent flows, the
ellipses processes and the boxes data.

The data set can be a local music collection on hard-disk,
or music found online by a web-crawler. As a first instan-
tiation we have filled a database with 2 music collections,
namely 815 ringtones, and 476.621 incipits of the RISM
collection [2].

Features are extracted and stored in the database’s tables.
Each matching component may require a specific feature set
to be extracted from the data. We extracted chunks, each
consisting of six consecutive notes in the ringtones and five
in the RISM collection. Chunks overlap resulting in 28.483
chunks in the ringtone and 4.664.702 in the RISM collec-
tion. For each note the onset, pitch and duration are stored.

Comparing the features of the query with those of all
tunes in the database can be a time-consuming task. There-
fore an index data structure is constructed. We have indexed
the chunks with the vantage indexing method [9]. The dis-
tances between all database tunes and some vantage objects
are pre-calculated. The set of tunes that have approximately
the same distance to the vantage objects as the query has to
these vantage objects, contains also those objects that have
about the same distance to the query object. At query time a
matching component only has to calculate the possibly com-
plex distance between the query and the vantage objects, af-
ter which an efficient range search among the pre-computed
distances can be done.

Muu 81 e

Keyboard - File Upload - Widi Device - Query by Humming

[¥] Metronome on Tempo: |100 |1\ | [l | [

=

=
=- |

® Add notes (Stretch not...) Movenotes () Frase notes

Select matching algorithm: [Proportional Transportation Distance(PTD) [~]

Figure 2. Muugle interface with piano-roll editor.

Generally, queries are in an audio or symbolic format.
Muugle currently provides four different interfaces designed
for query formulation by playing a software keyboard, up-
loading a MIDI file, playing an external MIDI device, or
by Query By Humming. Figure 2 depicts the software key-
board interface which can be played with the mouse. The
query can be modified (or generated from scratch) by means
of a piano-roll editor.

Appropriate features must be extracted from the query
for matching. The user-selected matching component uses
the features of the query and those of the tunes in the database
to arrive at a similarity judgment. Currently, four matching
components are implemented in Muugle, which all operate
on the note level. Three of these components use trans-
portation distances, which are the Earth Mover’s Distance
(EMD), the Proportional Transportation Distance (PTD) [6]
and the Combined EMD-PTD. The combined EMD-PTD
component calculates the EMD and the PTD distance and
returns the minimum of the two. The fourth component uses
the Maximum Overlap which is one of the geometrical algo-
rithms developed for the C-Brahms project [8].

The output of the matching component is a list of tune
ids, ordered according to the tunes’ similarity. The fetching
module receives this list and retrieves the data of the corre-
sponding tunes. Finally, an ordered list of tune references,
with for every tune a notation of its first few bars is presented
to the user.

The programming languages used for this instantiation
of Muugle are MySQL (database), Java (user interfaces), C
and C++ (matching and indexing), Perl (feature extraction)
and PHP (fetching and result presentation).

3. Discussion and Future Work

Muugle is a framework that integrates the study of several
aspects of MIR. Its modular architecture is designed for test-
ing and comparing input methods, result presentations and
MIR algorithms. Currently the focus is on symbolic repre-
sentations of music, but it is possible to incorporate audio
components.

We performed a pilot experiment to compare the differ-
ent input methods [1]. The subjects had to formulate a query
that was similar to a melody they just had heard. For each
query they used one of the input methods described above.
The results indicated that the Query by Humming method
was slightly better, and that subjects with prior knowledge
of MIDI benefited from the piano-roll editor. A larger ex-
periment is needed to give support to these indications.

We believe that the performance of a MIR system will
improve if it operates on higher-level features that are rel-
evant to human music perception and cognition. Although
these features, such as key and metric structure, are impor-
tant, extracting them from the raw query does not seem to
be feasible. It seems that people first of all try to capture the
basic contour of the melody they are searching. Therefore
we have started investigating the possibility of relevance-
feedback by the user. The idea is that feedback is given on
the results of a rough contour based search. In a second
search, key and metric structure are used.

Acknowledgements: This work is partially supported by the
Dutch ICES/KIS III bsik project MultimediaN. We thank Kjell
Lemstrom and the other researchers of the C-Brahms project for
providing us their implementation of the Maximum Overlap algo-
rithm. We thank Robbert Krijger, Bart van Andel, Bart Kuipers
and Niels Gorisse for implementing Muugle components.

References

[1] M. Bosma, R.C. Veltkamp, and F. Wiering. Muugle: A mu-
sic retrieval experimentation framework. In ICMPC, 2006.

[2] Repertoire International des Sources Musicales RISM. 2002.
http://rism.stub.uni-frankfurt.de.

[3] J.S. Downie, J. Futrelle, and D. Tcheng. The international
music information retrieval systems evaluation laboratory:
Governance, access and security. In ISMIR, 2004.

[4] J. Garbers. An environment for testing and comparing music
analysis algorithms. In ISMIR, 2006.

[5] G. Mazzola and O. Zahorka. The RUBATO performance
workstation on NEXTSTEP. In ICMC, 1994.

[6] R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wiering, and
R. van Oostrum. Using transportation distances for measur-
ing melodic similarity. In ISMIR, 2003.

[7]1 R. Typke, F. Wiering, and R.C. Veltkamp. A survey of music
information retrieval systems. In ISMIR, 2005.

[8] E. Ukkonen, K. Lemstrom, and V. Mikinen. Geometric al-
gorithms for transposition invariant content-based music re-
trieval. In ISMIR, 2003.

[9] J. Vleugels and R. C. Veltkamp. Efficient image retrieval
through vantage objects. Pattern Recognition, 35(1), 2002.

