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Abstract
There is an increasing interest in customizable methods for
organizing music collections. Relevant music characteriza-
tion can be obtained from short-time features, but it is not
obvious how to combine them to get useful information.
In this work, a novel method, denoted as the Positive Con-
strained Orthonormalized Partial Least Squares (POPLS), is
proposed. Working on the periodograms of MFCCs time
series, this supervised method finds optimal filters which
pick up the most discriminative temporal information for
any music organization task. Two examples are presented in
the paper, the first being a simple proof-of-concept, where
an altosax with and without vibrato is modelled. A more
complex 11 music genre classification setup is also inves-
tigated to illustrate the robustness and validity of the pro-
posed method on larger datasets. Both experiments showed
the good properties of our method, as well as superior per-
formance when compared to a fixed filter bank approach
suggested previously in the MIR literature. We think that
the proposed method is a natural step towards a customized
MIR application that generalizes well to a wide range of dif-
ferent music organization tasks.

Keywords: Music organization, filter bank model, positive
constrained OPLS

1. Introduction
The interest in automated methods for organizing music is
increasing, which is primarily due to the large digitalization
of music. Music distribution is no longer limited to physi-
cal media, but users can download music titles directly from
Internet services such as e.g. iTunes or Napster 1 . Portable
players easily store most users personal collections and al-
low the user to bring the music anywhere. The problem of
navigating these seemingly endless streams of music appar-
ently seems dubious with current technologies. However,
the increased research conducted in fields of music infor-

1 www.itunes.com and www.napster.com.
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mation retrieval (MIR) will aid users in organizing and nav-
igating their music collections. Furthermore, there has been
an increasing interest in customization when organizing the
music, see e.g. [1, 2], which provides a better control of the
users individual collections. The problems that researchers
face when working with customization, especially in MIR,
are many and indeed require robust machine learning algo-
rithms for handling the large amount of data available for an
average user. User interaction could be in the sense of or-
ganizing the music collection in specific taxonomies. This
could be a simple flat genre taxonomy that is frequently used
in portable players, or taxonomies based on instrumenta-
tion, artist or theme, see e.g. www.allmusic.com and
[1]. Customization in terms of predicting users personal
music taste was investigated in [3], where a support vector
machine was applied in connection with active retrieval.

The present work introduces a method for learning im-
portant dynamical structure in the short-time features 2 ex-
tracted from the music, in such a way that this information is
as relevant as possible for a given music organization task.
The basic idea stems from the work of [4], where the au-
thors investigated an audio classification task using differ-
ent perceptual (and non-perceptual) short-time features at
larger time-scales. A periodogram was computed for each
short-time feature dimension over a frame corresponding
to ∼ 768 ms, followed by a summarization of the power
in 4 predefined frequency bands using a filter bank. This
method was investigated in greater detail in [5], where dif-
ferent methods for handling dynamics of short-time features,
denoted as temporal feature integration 3 , were investigated.
The fixed filter bank applied in [4], was selected from the as-
sumed importance of the dynamics in the short-time features
for the given learning task. The method, however, is not gen-
eral enough, since for a custom music organization task, the
dynamics in the short-time features are context dependent
(i.e., the relevant pattern of temporal changes in short-time
features is expected to be different for, e.g., vibrato/non vi-
brato detection, or for genre classification tasks), which is
the reason for suggesting a method where an optimal filter
bank is learned for a particular music organization task.

2 Short-time features are usually extracted from music at time-levels
around 5 − 100ms.

3 Temporal feature integration is the process of combining all the feature
vectors in a time-frame into a single new feature vector in order to capture
the relevant temporal information in the frame.



The content of this paper has been structured as follows.
Section 2 presents the short-time features used and shortly
describes the method in [4] for capturing the dynamic struc-
ture in the short-time features. Section 3 introduces the posi-
tive constrained OPLS, which can be used to find an optimal
filter bank for any given music organization task. In Sec-
tion 4, two experiments are described: the first experiment
is a proof-of-concept illustrating the goodness of the filters
obtained using the proposed method, when discriminating
between vibrato/non-vibrato playing of music instruments;
in the second experiment, we compare the filter banks de-
rived from our method with those proposed in [4], within an
11 flat taxonomy music genre classification task. Section 5
provides the conclusion and suggestions for future work.

2. Music Feature Extraction
The complete system considered in this work has been il-
lustrated in Figure 1. The purpose of the overall system is
to classify music data according to some criterion, such as
genre, or presence vibrato, so we are assuming that some la-
belled data is available for the design. From the raw digital
audio signal, an initial step towards an automated organiza-
tion of music is feature extraction. This is the process of ex-
tracting relevant information from the audio signal that can
be used in a sub-sequential learning algorithm. A music sig-
nal is typically stationary in periods ranging from 5-100 ms,
see e.g. [6], and features extracted at this time-scale are de-
noted short-time features.

2.1. Short-time features
The Mel Frequency Cepstral Coefficients (MFCC) have been
selected as short-time features in this work. These coeffi-
cients were originally developed for automatic speech recog-
nition, aiming at deconvolving the effects of the vocal tract
shape and the vocal cord excitation. However, they have
been applied with great success in various fields of MIR,
see e.g. [7, 4, 3]. The features are perceptually inspired,
meaning that they resemble the auditory system of humans.
The MFCCs are ranked in such a manner that the lower or-
der MFCCs contain information about the slow variations in
the spectral envelope. Hence, including the higher MFCCs
a richer representation of the spectral envelope will be ob-
tained.

For this investigation, the 6 initial MFCCs have been
used, including the first coefficient, which is correlated with
the perceptual dimension of loudness. In the investigations,
each music snippet is power normalized prior to the MFCC
extraction stage. A frame-size of 30 ms and a hop-size of
7.5 ms have been applied in all experiments to minimize
aliasing in the MFCCs.

2.2. Temporal feature integration
Temporal feature integration is the process of combining all
the feature vectors in a time-frame into a single new fea-
ture vector in order to capture the relevant information in

the frame. Formally, this amounts to the following (see also
Fig. 1):

zk = f(xk·hsx
,xk·hsx +1, . . . ,xk·hsx +fsx−1), (1)

where x represents the short-time features (MFCCs), fsx is
the frame-size, and hsx the hop-size, both defined in a num-
ber of sample manner. Function f(·) maps the sequence of
short-time features into a single vector zk, for k = 0, 1, . . . ,
K − 1.

In [4] it was proposed to perform temporal feature in-
tegration by estimating the power spectrum of the MFCCs
using the periodogram method [8]. In addition to this, the
authors propose to summarize the energy in different fre-
quency bands using a predefined filter bank:

z̃(i)
k = WT z(i)

k (2)

where z(i)
k is a periodogram of dimension Dz of the i-th

MFCC coefficient over some frame fsx , k = 0, . . . , K − 1
is the index at the larger time-scale, and W comprises the
frequency magnitude response of the filter bank. Finally,
the feature vector z̃(i), which has as many components as
the number of filters in the bank, is used as an input to the
subsequent classification process.

In other words, the temporal feature extraction stage con-
sists of estimating the periodogram of each MFCC dimen-
sion independently over some time-frame fsx , after which
a filter bank W is applied. In the coming sections we have
removed the superscript i, meaning that each short-time fea-
ture dimension is processed independently, using the same
filter bank for all MFCCs.

The filter bank W is a matrix of dimension Dz×4, where
Dz = fsx

2 +1 (throughout this paper we will use fsx = 256,
so that Dz = 129), which simply summarizes the power
components in four frequency bands:

1. 0 Hz (DC value)

2. 1 − 2 Hz (beat rates)

3. 3 − 15 Hz (modulation energy, e.g. vibrato)

4. 20 − sx

2 Hz (perceptual roughness)

where the sampling rate sx is related to the hop-size (hsx).
This filter bank (W) has been suggested for general audio
classification and is inherently positive, since it is applied
directly on the estimated power spectrum (periodogram).
The filter bank, however, can easily become sub-optimal for
a specific music organization task, which is the reason for
suggesting a method for finding an optimal filter bank in a
supervised manner. The proposed method for the optimal
design of the filter bank is the topic of the next section.
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Figure 1. The figure illustrates the flow-chart of the complete
process. After MFCC extraction, periodograms are computed
for each MFCC. The output of the “periodogram” box is a
Dz = 129 dimensional vector for each MFCC, correspond-
ing to the power in the different frequency bands. The filter
bank (W or U) summarizes the power in predefined frequency
bands. The dimension of z̃, denoted by Dz̃ will depend on the
number of MFCCs, the selected frame-size fsx and the num-
ber of filters in the filter bank W (fixed to 4) or U (nf ).

3. Supervised Design of Filter Banks
As can be understood from our previous discussion, and
since the goal is to optimize the classification performance
of the whole system, a better behavior can be obtained if the
filter bank is designed in a supervised manner, i.e., to opti-
mize the performance in some training dataset whose labels
are used during the design process.

Then, we will assume that we are given a set of N train-
ing pairs {zk,yk}N

k=1, with yk being the label vector asso-
ciated to zk. The C dimensional vector yk, where C is the
number of classes, contains a one in the position of the true
label for pattern zk, and zeros elsewhere. In this section,
we address the issue of how one can use the training data
to design a filter bank U = [u1,u2, . . . ,unf

], where um is
the frequency amplitude of the m-th filter and nf is the total
number of filters in the bank, in such a way that the outputs
of the filters,

z̃k = UT zk, (3)

are as relevant as possible for the classification task at hand 4 .

4 Note that we have opted to use U to denote the filter bank obtained
with our method, to differentiate it from the filter bank from [4] that we

From its definition, and given that this matrix operates on the
power spectrum of the different MFCCs, it should be clear
that all elements in U should be non-negative numbers (i.e.,
uij ≥ 0), so that z̃k can be effectively interpreted as the out-
put energies of a filter bank. Note that a negative u ij would
correspond to the subtraction of the energy in a certain fre-
quency band.

The procedure we present lies within the framework of
Multivariate Analysis methods [9], and, in particular, it is
a variant of Orthonormalized Partial Least Squares (OPLS).
Next, we will briefly review OPLS, and explain how it can
be solved under the additional constraints u ij ≥ 0, resulting
in a method that we have called Positive constrained OPLS
(POPLS). Readers that prefer to skip the implementation de-
tails of the method, can go directly to the experiments sec-
tion.

3.1. Multi-regression model for Feature Extraction and
Data Classification

For the classification process (see Fig. 1) we will consider
a multi-regression model. Although other models are pos-
sible, we will see that the regression approach results in a
very convenient method for computing the filter bank. The
multi-regression model can be written as

ŷk = BUT zk + b = Bz̃k + b, (4)

where ŷk is the predicted output, and {B,b} are the free
parameters of the model. In particular, b is a bias that com-
pensates for the different means of the input and output vari-
ables. Note that, since B is C × nf and U is Dz × nf , the
filter bank is effectively imposing a bottleneck in the sys-
tem, in the sense that the z̃k vectors given to the classifier
are lower dimensional than the original zk. This dimension-
ality reduction is very useful to simplify the design of the
classifier and to improve generalization, and is an unavoid-
able step when the training dataset is small. However, in
order to not degrade the performance of the classifier, it is
crucial that z̃k retains the most discriminative information
in zk, what can only be achieved with a good design of the
filter bank.

Our aim is to adjust all parameters in the model, as well
as the filter bank, to minimize the sum-of-squares of the dif-
ferences between the real and estimated labels, i.e.,

[Uo,Bo,bo] = arg min
U,B,b

‖Y − BZ̃ − b1T ‖2
F (5)

where Y = [y1, . . . ,yN ], 1 is an all-ones vector of appro-
priate dimensions, and Z̃ = UT Z with Z = [z1, . . . , zN ].
Subscript ‘F ’ refers to the Frobenius norm of a matrix.

It is known that Bo can be obtained as the solution of the

will denote with W throughout the paper.



following modified problem:

Bo = arg min
B

‖Yc − BZ̃c‖2
F

= YcZ̃T
c (Z̃cZ̃T

c )−1
(6)

where Z̃c and Yc are centered versions of Z̃ and Y, respec-
tively. Then, the bias is simply given by

b0 = 1
N

(Y − B0Z̃)1. (7)

Once we have derived a closed form expression for B o

and bo, we are ready to present our POPLS method for
the selection of the optimal filter bank which minimizes (5)
[10], subject to the constraint that all entries in U are posi-
tive.

3.2. Positive Constrained OPLS
To start with, let us introduce the optimal regression matrix,
B0, into (5). Taking also into account that Z̃c = UT Zc, the
minimization problem can be rewritten as

Uo = arg min
U

‖Yc − BoZ̃c‖2
F

= arg min
U

‖Yc[I − ZT
c U(UT ZcZT

c U)−1UT Zc]‖2
F

with I being the N dimensional identity matrix.
Now, using the fact that ‖A‖2

F = Tr{AAT }, and after
some algebra, we arrive to the following optimization prob-
lem

maximize: Tr{(UT CzzU)−1UT CzyCyzU} (8)

subject to: UT U = I (9)

uij ≥ 0 (10)

where we have defined the covariance matrices Czz = ZcZT
c ,

Czy = ZcYT
c and Cyz = CT

zy , and where we have made
explicit the positivity constraint. The additional constraint
(9) is needed to make the solution unique.

There are a number of ways to solve the above problem.
We will use a procedure consisting on iteratively calculating
the best filter, so that we are not only guaranteeing that Uo

is the optimal bank with nf filters, but also that any subbank
consisting of some of the first columns of Uo is also opti-
mal with respect to the number of filters used. In brief, the
process consists of the following two differentiated stages:

1) Solve the “one filter” optimization problem given by:

maximize:
uT CzyCyzu

uT Czzu
(11)

subject to: uT u = 1 (12)

ui ≥ 0 (13)

2) Remove from Yc the prediction obtained from the cur-
rent filter bank.

Inputs: Z, Y, nf

1 - Calculate centered data matrices Zc and Yc

2 - Czz = ZcZT
c , Y(1)

c = Yc

3 - For m = 1, . . . , nf

3.1 - C(m)
yz = Y(m)

c Zc
T ; C(m)

zy = C(m)
yz

T

3.2 - Solve (11)-(13) to obtain um

3.3 - Y(m+1) = Y(m)
[
I − ZT

c umuT
mZc

uT
mCzzum

]

4 - Output filter bank: Uo = [u1, . . . ,unf
]

Table 1. POPLS pseudocode.

Table 1 summarizes our POPLS algorithm for the super-
vised design of filter banks. It is also worth mentioning that,
in our implementation, the maximization problem (11)-(13)
was solved with the fmincon matlab function. However, in
most occasions, the convergence of this routine was not sat-
isfactory, making it necessary to recur to an alternative rep-
resentation of u based on hyperspherical coordinates. The
advantage of this representation is that restriction (12) is di-
rectly incorporated into the representation, what simplifies
the application of any optimization algorithm.

4. Experiments
This section considers two different experiments. The ex-
periment described in Subsection 4.1 is a proof-of-concept
experiment that illustrates the basic idea of POPLS for dis-
criminating between an instrument played with and without
vibrato. The second line of experiments described in Sub-
section 4.2 considers an 11 music genre dataset, investigated
using the filter W from [4] and the filter obtained from the
POPLS, U.

4.1. Experiment 1: Instrument vibrato/non-vibrato de-
tection

This experiment considers the problem of detecting vibrato
or non-vibrato of a single instrument and is only intended as
a proof-of-concept example.

A small dataset has been created consisting of music snip-
pets consisting of an alto saxophone with notes ranging from
Db3 to Ab5 (138.59−830.61 Hz), with and without vibrato,
resulting in a total of 64 (32 train / 32 test) small music clips
each of 3− 4 s. The music samples were extracted from the
MIS (Music Instrument Samples) database developed by the
university of Iowa [11]. This database has been applied in
connection with automated instrument classification in e.g.
[12].

Only the first MFCC has been used in this experiment,
which is known to be correlated with the perceptual dimen-
sion of loudness. A frame-size (fsx) corresponding to 960 ms
and a corresponding hop-size of 240 ms were selected. The
frame-size was selected to ensure a few periods of the mod-
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Figure 2. The left and right figure illustrates the first and sec-
ond most discriminative filters extracted by the POPLS proce-
dure, respectively.

ulation frequency of 4−5 Hz, hence, obtaining a better spec-
tral estimate for the instruments played with vibrato.

Leave-one-out cross-validation (LOO-CV) [13] was ap-
plied to access the test-accuracy. In each fold, the optimal
filters were calculated using the POPLS method described in
Subsection 3.2, and the resulting error was obtained using a
linear classifier. The LOO-CV classification error obtained
using nf = 25 filters was 19% at the 960 ms time-scale,
getting as low as 9.4% when performing weigted voting 5

across the frames in each music sample to achieve a single
decision of each music sample. It is noted that, when us-
ing the fixed filter bank W, close to random performance
(48.3%, where random performance is 50%) is obtained,
which is ascribed to a smearing of the relevant frequency
components, since the filter is summarizing the frequencies
between 3 − 15 Hz.

The two filters with largest discriminative performance
provided by POPLS have been illustrated in Figure 2. The
left figure, which illustrates the filter with largest discrimi-
native performance, clearly indicates that the most relevant
information concerning the modulation (vibrato∼ 4−6 Hz)
of the instrument is learned by the POPLS. Using only these
two filters a classification error of 20% is obtained using
weighted voting to obtain a single decision per music sam-
ple.

4.2. Experiment 2: Music genre classification
The experiment described in this subsection considers the
fixed filter bank W and the POPLS method for determining
a filter bank U in an 11 music genre classification setup.

4.2.1. Dataset

The dataset has previously been investigated in [5, 14], and
consists of 1317 music snippets each of 30 s. distributed
evenly among the 11 music genres: alternative, country,
easy listening, electronica, jazz, latin, pop&dance, rap&hip-
hop, r&b and soul, reggae and rock, except for latin, which
only has 117 music samples. The labels have been obtained
from an external reference. The music snippets consist of

5 Weighted voting is the process of selecting class membership by sum-
ming across the output vectors of the classifier, ŷk , corresponding to all
feature vectors z̃k belonging to the same clip. The class that obtains the
largest sum is the “voted” class.
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Figure 3. The left figure illustrates the mean cross-validation
error for the fixed filter bank (W, solid line) and the first 4
filters of the POPLS procedure (U, broken line). The right
figure illustrates the mean cross-validation error for the nf =
25 filters obtained by the POPLS procedure. The error-bars
on both plots are ± the standard deviation of the mean.

MP3 (MPEG1-layer3) encoded music with a bitrate of 128
kbps or higher, downsampled to 22050 Hz. This dataset is
rather complex having on the average 1.83 songs per artist.
Previous results show that this is a difficult dataset for genre
classification (see, for instance, [14]).

4.2.2. Initial investigations
Previous investigations of the frame-size conducted in [5]
showed that a frame-size (fsx) of approximately 2 s was op-
timal for the method in [4]. Since the aim is to illustrate
that a supervised determination of the filter bank is supe-
rior to the fixed filter bank, the same frame-size has been
used for POPLS. With a hop-size on the short-time features
of 7.5 ms, this frame-size corresponds to approximately 256
samples. Due to the symmetry in the periodogram, the re-
sulting dimensions of the filter banks become 129 × nf for
U and 129 × 4 for W. It was observed that the mean clas-
sification test error did not improve for nf > 25, hence,
nf = 25 was the largest amount of filters investigated.

4.2.3. Results & Discussion

To access the classification accuracy of the two methods,
10-fold cross-validation has been applied. In each fold, the
optimal filters were estimated from the training set as de-
scribed in Section 3, and the performance of the system was
subsequently evaluated on the corresponding test fold.

Figure 3 shows the 10-fold cross-validation error as a
function of the number of filters in the banks. The left fig-
ure shows the cross-validation error obtained using only the
first 4 filters of the POPLS, and using the fixed filter bank
W. It is observed that the filters obtained by the POPLS
procedure are on the average 2% better than the fixed filter
bank, shown in solid line. Furthermore, using only the first
3 filter banks obtained by POPLS the cross-validation test
error is similar to the performance obtained using the fixed
filter bank W. Although most of the important dynamical
structure of the MFCCs is captured by the first few filters of
U, the right plot of Figure 3 shows that a significant error
reduction can be obtained when considering a larger number
of filters, achieving error rates around 61% for nf > 15.
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Figure 4. The four most discriminative filters, where the up-
per left figure illustrates the most relevant filter for the specific
music genre classification setup.

Figure 4 shows the first 4 filters obtained on a single
fold using the POPLS. Filter 1 includes the most important
frequencies of the MFCCs periodograms, which basically
cover the modulation frequencies of instruments. Filters 2
and 3 provide attention to the lower modulation frequencies,
with filter 2 having frequency components at the beat-scale.
Filter 4 spans the higher modulation frequencies, which are
related to the perceptual roughness. The difference between
the filters obtained for each training data fold is small, which
partly illustrates that the proposed method is robust to noise
and, further, that the specific underlying temporal structure
of the MFCCs is relevant for discriminating between the dif-
ferent genres.

5. Conclusions and Future work
In this paper we have presented a method for designing fil-
ter banks that are able to learn the important dynamics in
short-time features for a given classification task. The pro-
posed method is very versatile, in the sense that it can be
applied to any discrimination task, as we have illustrated in
our experiments section, where we tackled two very differ-
ent classification problems, namely, the detection of vibrato
in instrument music clips, and music genre classification.
The advantage of our approach over other feature extraction
methods, is that it provides an elegant physical interpreta-
tion of the extracted features, in terms of the dynamical be-
havior of the MFCCs time series.

Although here we limited the method to provide an unique
filter bank, it is straightforward to allow for different filters
for each of the MFCCs. Exploiting the cross-correlation
among the different filters in the bank, could also be used
to improve the accuracy of the whole system. These lines,
as well as the application of the method to other MIR prob-
lems, constitute logical directions for future research.
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