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Abstract
This paper presents a probabilistic model of temporal struc-
ture in music which allows joint inference of tempo, meter
and rhythmic pattern. The framework of the model natu-
rally quantifies these three musical concepts in terms of hid-
den state-variables, allowing resolution of otherwise appar-
ent ambiguities in musical structure. At the heart of the sys-
tem is a probabilistic model of a hypothetical ‘bar-pointer’
which maps an input signal to one cycle of a latent, periodic
rhythmical pattern. The system flexibly accommodates dif-
ferent input signals via two observation models: a Poisson
points model for use with MIDI onset data and a Gaussian
process model for use with raw audio signals. The discrete
state-space permits exact computation of posterior proba-
bility distributions for the quantities of interest. Results are
presented for both observation models, demonstrating the
ability of the system to correctly detect changes in rhythmic
pattern and meter, whilst tracking tempo.

Keywords: tempo tracking, rhythm recognition, meter recog-
nition, Bayesian inference

1. Introduction
In construction of intelligent music systems, an important
perceptual task is how to infer attributes related to temporal
structure. These attributes may include musicological con-
structs such as meter and rhythmic pattern. The recognition
of these characteristics forms a sub-task of automatic mu-
sic transcription - the unsupervised generation of a score,or
description of an audio signal in terms of musical concepts.

For interactive performance systems, especially when an
exact score isa-priori unknown, it is crucial to construct
robust algorithms that can correctly operate under rhyth-
mic fluctuations, ritardando/accelarando (systematic slow-
ing down or speeding up), metric modulations, etc. For mu-
sic categorisation systems, tempo and rhythmic pattern are
defining features of genre. It is therefore apparent that a
complete system should be able to recognise all these fea-
tures.
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Much work has been done on detecting the ‘pulse’ or
foot-tapping rate of musical audio signals. Existing algo-
rithmic approaches dealing with raw audio signals focus on
the extraction of some frequency variable representing this
rate [1],[2]. However these approaches do not detect more
complex temporal characteristics, such as meter and rhyth-
mic pattern, which are needed for complete transcription.
Goto and Muraoka detail a multiagent hypothesis system
which recognises beats in terms of the ‘reliability’ of hy-
potheses for different rhythmic patterns, given a fixed 4/4
meter [3].This system was later extended to deal with non-
percussive music [4].

Cemgil and Kappen also introduce musical concepts by
modelling MIDI onset events in terms of a tempo process
and switches between quantised score locations [5]. Raphael
independently proposed a similar system [6]. Hainsworth
and Macleod build on some elements of this work inferring
beats from raw audio signals using an onset detector [7], but
in these works meter and rhythmic pattern are still not ex-
plicitly modelled.

Approaches to meter detection include ‘Gaussification’
of onsets [8], similar to the Tempogram representation of
Cemgil et. al. [9], autocorrelation methods, [10],[11] and
preference-rule based systems, [12],[13]. Pikrakis et al.ex-
tract meter and tempo, assuming that meter is constant [14].
Takeda et al. perform tempo and rhythm recognition from
a MIDI recording by analogy with speech-recognition [15].
Klapuri et. al. define metrical structure in terms of pulse
sensations on different time scales [16]. This system is suc-
cessful in detecting periodicity on these time scales, but does
not yield an explicit estimate of musical meter in terms of
standard musical notation: 3/4, 4/4 etc.

In this paper we focus on three musical concepts: tempo,
meter and rhythmic pattern. The strength of the system
presented here, compared to the existing works described
above, is that it explicitly models these three concepts in
a consistent framework which resolves otherwise apparent
ambiguities in musical structure, for example switches in
rhythmic pattern or meter. Furthermore, the probabilistic
approach permits robust inference of the quantities of inter-
est, in a principled manner.

In the Bayesian paradigm one views tempo tracking and
recognition of meter and rhythmic pattern as a latent state in-
ference problem, where given a sequence of observed data



Y1:K , we wish to identify the most probable hidden state
trajectoryX0:K . Firstly we need to postulate prior distri-
butions overX0:K . Secondly, an observation model is de-
fined which relates the observations to the hidden variables.
The posterior distribution over hidden variables is given by
Bayes’ theorem:

p(X0:K |Y1:K) =
p(Y1:K |X0:K)p(X0:K)

p(Y1:K)
(1)

This admits a recursion for online (‘causal’), potentiallyreal-
time computation of filtering distributions of the form
p(Xk|Y1:k), from which estimates of the current tempo, rhyth-
mic pattern and meter can be made, given observations up
to the present time. Definingαk ≡ p(Xk|Y1:k)p(Y1:k),

αk = p(Yk|Xk)

∫

dXk−1p(Xk|Xk−1)αk−1 (2)

For off-line inference,smoothingmay be performed, which
conditions on future as well as present and past observa-
tions. Intuitively, smoothing is the retrospective improve-
ment of estimates. Definingβk ≡ p(Yk+1:K |Xk),

βk =

∫

dXk+1p(Xk+1|Xk)p(Yk+1|Xk+1)βk+1 (3)

A smoothing distribution for a single time index may be ob-
tained in terms of the corresponding filtering distribution:

p(Xk|Y1:K) ∝ αkβk (4)

2. Dynamic Bar Pointer Model
We here define the ‘bar pointer’ as being a hypothetical, hid-
den object located in a space consisting of one period of a
latent rhythmical pattern, i.e. one bar. The velocity of the
bar pointer is defined to be proportional to tempo, measured
in quarter notes per minute. Note that we therefore avoid
explicitly modelling hierarchical periodicity, as described
for example in [16] in terms of measure, tactus and tatum
periods, but such quantities could be be extracted from the
model if required.

In qualitative terms, for a given rhythmical pattern there
are locations in the bar at which onsets will occur with rel-
atively high probability. This concept is quantified and re-
lated to observed signals in section 3 below. In this section
we define the prior model for the bar pointer dynamics.

We choose to define a discrete ‘position’ space in terms
of M uniformally spaced points in the interval[0, 1). De-
note bymk ∈ {1, 2, ..., M} the index of the location of
the bar-pointer in this space at timek∆, where∆ andk ∈
{1, 2, ..., K} are respectively the discrete time period and
index. Next define a discrete ‘velocity’ space withN el-
ements and denote bynk ∈ {1, 2, ..., N} the index of the
velocity of the bar pointer at time indexk. A similar con-
struction called a ‘score position pointer’ is defined in [17],

but for this model exact inference is intractable and switches
in rhythmic pattern and meter are not explicitly modelled.

Over time the position and velocity indices of the bar
pointer evolve according to:

mk+1 = (mk + nk − 1)mod (Mθk) + 1 (5)

for 1 < nk < N ,

p(nk+1|nk) =







pn

2 , nk+1 = nk ± 1
1 − pn, nk+1 = nk

0, otherwise
(6)

wherepn is the probability of a change in velocity. At a
boundary,nk = 1 or nk = N , the velocity either remains
constant with probability1 − pn, or transitions respectively
to nk+1 = 2 or nk+1 = N − 1 with probabilitypn. A mod-
ulo operation is implied in a similar context in [6], to allow
calculation of note lengths in terms of quantised score loca-
tions. In the dynamic bar pointer model, this modulo oper-
ation is made explicit and exploited to allow representation
of switches in meter. The meter indicator variable,θk, takes
one value in a finite set, for exampleθk ∈ T = {3/4, 4/4},
at each time indexk. This facilitates modelling of switches
between3/4 and4/4 meters during a single musical pas-
sage and is illustrated in figure 1. The advantage of this
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Figure 1: Toy example of the position and velocity state sub-
space for M = 8, N = 3. Solid lines indicate examples of
possible state transitions and dotted lines indicate the effect of
the modulo operation for different meters. The implication is
that, for a given tempo, one bar in 3/4 meter is simply 3/4 the
length of one bar in 4/4 meter. The concept generalises to other
meters, eg bars in 2/4, 3/4, and 4/4 can all be represented as
subsets of a bar in 5/4 meter. Note that in practiceM would be
chosen much larger.

approach compared to the existing resonator-based system
of Scheirer, [1], is that the bar pointer continues to move
whether or not onsets are observed. This explicitly models
the concept that tempo is a latent process and provides ro-
bustness against rests in the music which might otherwise
be wrongly interpreted as local variations in tempo. Large
and Kolen formulate a phase locking resonator, but it is not
given a full probabilistic treatment [18].



Switches in meter are modelled as occurring when the
bar-pointer passes the end of the bar:

for mk < mk−1,

p(θk|θk−1, mk, mk−1) =

{

pθ, θk 6= θk−1

1 − pθ, θk = θk−1
(7)

otherwise,

p(θk|θk−1, mk, mk−1) =

{

0, θk 6= θk−1

1, θk = θk−1
(8)

wherepθ is the probability of a change in meter at the end
of the bar.

The last state variable is a rhythmic pattern indicator,rk,
which takes one value in a finite set, for examplerk ∈ S =
{0, 1}, at each time indexk. The elements of the setS cor-
respond to different rhythmic patterns, described in section
3. For now we deal with the simple case in which there are
only two such patterns, and switching between values ofrk

is modelled as occurring at the end of the bar:

for mk < mk−1,

p(rk|rk−1, mk, mk−1, θk−1) =

{

pr, rk 6= rk−1

1 − pr, rk = rk−1

(9)
otherwise,

p(rk|rk−1, mk, mk−1, θk−1) =

{

0, rk 6= rk−1

1, rk = rk−1
(10)

wherepr is the probability of a change in rhythmic pattern
at the end of a bar.

In summary,Xk ≡ [mk nk θk rk]T specifies the state of
the system at time indexk. For computation, the set of all
possible states may be arranged into a vectorx and the state
of the system at timek may then be represented byXk =
x(i), ie theith element of this vector. Using equations 5 -
10, a transition matrixA may then be constructed such that:

A(i, j) = p(Xk+1 = x(j)|Xk = x(i)) (11)

For a value ofM which is high enough to give useful reso-
lution, eg. 1000, and a suitable value ofN , eg20, this ma-
trix is large, but extremely sparse, making exact inference
viable.

3. Observation Models
3.1. Poisson Points
Denote byyk the number of MIDI onset events observed in
thekth non-overlapping frame of length∆. All other MIDI
information, (eg. key, velocity, duration) is disregarded. The
numberyk is modelled as being Poisson distributed:

p(yk|λk) =
λyk

k exp(−λk)

yk!
(12)

A gamma distribution is placed on the intensity parameter
λk. This provides robustness against variation in the data.
The shape and rate parameters of the gamma distribution,
denoted byak andbk respectively, are functions of the value
of a rhythmic pattern function,µ(mk, rk). The mean of the
gamma distribution is defined to be the value of this rhyth-
mic pattern function, which quantifies knowledge about the
probable locations of note onsets for a given rhythmic pat-
tern. This formalises the onset time heuristics given in [4].
Examples of rhythmic pattern functions are given in figure
2. For brevity denoteµk ≡ µ(mk, rk).

p(λk|mk, rk) =
bak

k exp(−bkλk)

Γ(ak)
λak−1

k (13)

ak = µ2
k/Qλ (14)

bk = µk/Qλ (15)

whereQλ is the variance of the Gamma distribution, the
value of which is chosen to be constant.

Inference of the intensity parameterλk is not required so
it is integrated out. This may be done analytically, yielding:

p(yk|mk, rk) =
bak

k Γ(ak + yk)

yk!Γ(ak)(bk + 1)ak+yk

(16)

Figure 3 gives a graphical representation of the combination
of the Poisson Points observation model and the Dynamic
Bar-Pointer model.
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Figure 2: Two example rhythmic pattern functions for use with
the Poisson points observation model, each corresponding to a
different value of rk. Top - a bar of triplets in 4/4 meter, Bot-
tom - a bar of duplets in 4/4 meter. The locations of the peaks in
the function correspond to the locations of probable onsetsfor
a given rhythmic pattern. The heights of the peaks imply the
average number of onset events at the corresponding bar loca-
tions, via a gamma distribution. The widths of the peaks model
arpeggiation of chords and expressive performance. Construc-
tion in terms of splines permits flat regions between peaks, cor-
responding to an onset event ‘noise floor’.



n0 n1 n2 n3

θ0 θ1 θ2 θ3

m0 m1 m2 m3

r0 r1 r2 r3

λ1 λ2 λ3

y1 y2 y3

Figure 3: Graphical representation of the bar-pointer model in
conjunction with the Poisson points observation model. Each
node corresponds to a random variable. Directed links denote
statistical dependence: each node is conditionally independent,
given the values of its ‘parent’ nodes. The graph for the Gaus-
sian process model is exactly equivalent.

3.2. Gaussian Process
The motivation for specifying this second observation model
is to demonstrate that the dynamic bar pointer framework
can be employed with raw audio as well as MIDI onset data.
The Gaussian process model presented here is therefore sim-
ple and is suitable for percussive sounds only. However, it
should be noted that this observation model could easily be
modified to operate on other feature streams, such as those
in defined in [2], taking into account changes in spectral
content.

Denote byzk a vector ofν samples constituting thekth
non-overlapping frame of a raw audio signal. The time inter-
val ∆ is then given by∆ = ν/fs, wherefs is the sampling
rate. The samples are modelled as independent with a zero
mean Gaussian distribution:

p(zk|σ
2
k) =

1

(2πσ2
k)ν/2

exp

(

−
z

T
k zk

2σ2
k

)

(17)

An inverse-gamma distribution is placed on the varianceσ2
k.

The shape and scale parameters of this distribution, denoted
by ck anddk respectively, are determined by the location of
the bar pointer,mk and the rhythmic pattern indicator vari-
ablerk, again via a rhythmic pattern function,µk. An ex-
ample of a rhythmic pattern function for use with this model
is shown in figure 4.

p(σ2
k|mk, rk) =

dck

k exp(−dk/σ2
z)

Γ(ck)
σ
−2(ck+1)
k (18)

ck = µ2
k/Qs + 2 (19)

dk = µk

(

µ2
k

Qs
+ 1

)

(20)

whereQs is the variance of the inverse-gamma distribution
and is chosen to be constant.

The variance of the Gaussian distribution,σ2
k, may be

integrated out analytically to yield:

p(zk|mk, rk) =
dck

k Γ(ck + ν/2)

(2π)ν/2Γ(ck)

(

z
T
k zk

2
+ dk

)

−(ck+ν/2)

(21)
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Figure 4: A duplet rhythmic pattern function for use with
the Gaussian Process observation model, corresponding to one
value of rk. The function is piece-wise exponential: a simple
model of energy transients for percussive onsets. The locations
of the peaks correspond to temporal locations of probable on-
sets for a given rhythmical pattern. The heights of the peaks
imply the average signal power at the corresponding bar loca-
tions, via an inverse-gamma distribution.

4. Inference Algorithm
Computation of posterior marginal filtering and smoothing
distributions can be performed exactly using the forwards-
backwards algorithm, see [19] and references therein for
details. At each time step, the forward pass of the algo-
rithm recursively computes a so-called ‘alpha message’ vec-
tor, αk. Each element of this vector,αk(i), is proportional
to p(Xk = x(i)|y1:k) - the corresponding element of the
filtering distribution1 . The recursion is given by:

αk+1 = OkA
T αk (22)

α0 = p(X0) (23)

whereA is the state transition matrix as previously defined
andOk is a diagonal matrix:

Ok(j, j) = p(yk|Xk = x(j)) (24)

The forward pass can potentially be carried out in real time.
The backward pass of the algorithm computes the beta mes-
sages,βk, which are then combined with the alpha messages
to give the corresponding smoothing distribution:

βk = Ok+1Aβk+1 (25)

βK = 1 (26)

1 Notation for the Poisson points observation model. For the Gaussian
process model, replacey1:k with z1:k.



p(Xk|y1:K) ∝ αk ∗ βk (27)

where1 is a vector of ones and∗ represents element-wise
product.

5. Results
5.1. MIDI Onset Events

Figure 5 shows results for an excerpt of a MIDI performance
of ‘Michelle’ by the Beatles, demonstrating the joint tempo-
tracking and rhythm recognition capability of the system.
The performance, by a professional pianist, was recorded
using a Yamaha Disklavier C3 Pro Grand Piano. The Pois-
son points observation model was employed with the two
rhythmic patterns in figure 2 and a single value ofθk = 1,
ie 4/4 meter. Uniform initial prior distributions were set on
mk, nk andrk, with M = 1000 andN = 20. The time
frame length was set to∆ = 0.02s, corresponding to the
range of tempi:12 − 240 quarter notes per minute. The
probability of a change in velocity from one frame to the
next was set topn = 0.01 and the probability of a change
in rhythmic pattern was set topr = 0.1. The variance of the
Gamma distribution was setQλ = 10.

This section of ‘Michelle’ is potentially problematic for
tempo trackers because of the triplets, each of which by def-
inition has a duration of 3/2 quarter notes. A performance of
this excerpt could be wrongly interpreted as having a local
change in tempo in the second bar, when really the rate of
quarter notes remains constant; the bar of triplets is just a
change in rhythm.

In figure 5, the strong diagonal stripes in the image of the
posterior smoothing distributions formk correspond to the
maximum a-posteriori(MAP) trajectory of the bar pointer.
The system correctly identified the change to a triplet rhythm
in the second bar and the subsequent reversion to duplet
rhythm. The MAP tempo is given by the darkest stripe in
the image for the velocity log-smoothing distribution - it is
roughly constant throughout.

5.2. Raw Audio

A percussive pattern with a switch in meter (score given in
figure 6) was performed and recorded in mono .wav for-
mat atfs = 11.025kHz. The system was then run on this
raw audio signal using the Gaussian Process observation
model, to demonstrate joint tempo tracking and meter recog-
nition. The single rhythmic pattern function given in fig-
ure 4 was employed in conjunction with two meter settings:
θk ∈ {3/4, 4/4}. The probability of a change in velocity
was setpn = 0.01 and the probability of a change in me-
ter was setpθ = 0.1. The variance of the inverse-gamma
distribution was setQs = 10. The frame length in samples
was setν = 256 with M = 1000 and N = 20, corre-
sponding to the range of tempi:10.3−208 quarter notes per
minute. Uniform initial prior distributions were set on all
hidden variables.
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Figure 5: Results for joint tempo tracking and rhythmic pat-
tern recognition on a MIDI performance of ‘Michelle’ by the
Beatles. The top figure is the score which the pianist was given
to play. Each image consists of smoothing marginal distribu-
tions for each frame index.

Whilst each section of this percussive pattern may appear
simple at first glance, it poses two potential challenges for
tempo trackers. Firstly, the lack of eighth notes in the middle
two bars could incorrectly be interpreted as a reduction in
tempo by a factor of two. However, the tempo measured
as the rate of quarter notes remains constant. Secondly, the
meter switch in the same two bars disrupts the accent pattern
established in bars 1,2,5 and 6.

Figure 6 shows that the system correctly identified the
metrical modulation. Note that the system is robust to the
lack of eighth notes in the third and fourth bars; the MAP
tempo is roughly constant throughout.

Audio files and supporting materials for further results
may be found on the web athttp://www-sigproc.
eng.cam.ac.uk/ ˜ npw24/ismir06/

6. Discussion
A model of temporal characteristics of music has been pre-
sented, based around the probabilistic dynamics of a hypo-
thetical bar pointer. Two observation models accommodate
MIDI onset events or percussive raw audio, relating the ob-
served data to the location of the bar pointer. Exact inference
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Figure 6: Results for joint tempo tracking and meter recog-
nition from raw audio. The top most figure is the percussion
score for the piece.

of tempo, rhythmic pattern and meter may be performed on-
line (and potentially real time) from posterior filtering distri-
butions, suitable for automatic accompaniment applications.
For analysis and information retrieval purposes, off-lineop-
eration yields smoothing posterior distributions. Demon-
strations of the capabilities of the system were presented for
two pieces, one involving a change in rhythmic pattern and
the other a switch in meter. The results show that the sys-
tem robustly handles such temporal variations which might
defeat simple tempo trackers.

We are currently investigating how this model could be
extended to use MIDI volume information, via a marked
Poisson process. Higher tempo resolution, larger numbers
of meters and rhythmic patterns would require an even larger
transition matrix, ultimately exceeding practical computa-
tional limits. Future work will therefore investigate the ap-
plication of faster, approximate inference schemes, such as
particle filtering, and the treatment of the position and ve-
locity of the bar pointer as continuous variables.
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