
MusicRainbow: A New User Interface to Discover Artists
Using Audio-based Similarity and Web-based Labeling

Elias Pampalk and Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST)

IT, AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

Abstract
In this paper we present MusicRainbow which is a simple in-
terface for discovering artists where colors encode different
types of music. MusicRainbow is based on a new audio-
based approach to compute artist similarity. This approach
scores 15 percentage points higher in a genre classification
task than the similarity computed on track level. Using a
traveling salesman algorithm, similar artists are mapped near
each other on a circular rainbow. Furthermore, we present
a new approach of combining this audio-based information
with information from the web. In particular, we label the
rainbow and summarize the artists with words extracted from
web pages related to the artists. We use different vocabular-
ies for different hierarchical levels and heuristics to select
the most descriptive labels. We conclude with a discussion
of the results. The first impressions are very promising.

1. Introduction
Declining production costs have made it much easier for
artists to produce their own music without the support of
record labels. Furthermore, the Internet enables artists to
easily reach out to their audience. However, at the same
time the competition for attention has become harder. Mu-
sic listeners are confronted with an abundance of choices.
The work presented in this paper aims at supporting listen-
ers in discovering artists they might not discover otherwise.

There are many ways to discover artists, including, for
example, reading reviews and recommendations, browsing
lists of similar artists (e.g. amazon.com or allmusic.com),
participating in community networks (e.g. myspace.com),
or listening to personalized Internet radio (e.g. last.fm).

In contrast to these existing approaches, we use content-
based analysis to compute artist similarity. In particular, we
do not use collaborative filtering or manually annotated data.
Content-based approaches have the advantage that they are
not biased by popularity (unlike collaborative filtering) and
are much cheaper than manual annotations. Furthermore,
we do not assume that the users have specific artists in mind
when they start their exploration. This is in contrast to sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

tems such as liveplasma.com which require the user to enter
an artist’s name before they recommend similar artists.

Our primary objective is to support users in discovering
new artists. Given a large music collection with many dif-
ferent styles of music, the users should be able to quickly
get an overview of the contents. The secondary objective
is to keep the interface as simple as possible. Usage of the
interface should be intuitive and require no training. The
interface should be implementable on mobile devices with
limited screen sizes including phones and music players.

In this paper we present a new music interface to discover
artists. Artists are arranged on a circular rainbow (with no
beginning or end, see Figure 1). Similar artists are located
close to each other on the rainbow. The similarity is com-
puted by analyzing the audio signals. The rainbow is labeled
automatically with words occurring on web pages related to
the artists. The web pages are found using Google and fil-
tered using specific vocabularies. The rainbow consists of 8
concentric rings having different colors from purple (inside)
to red (outside). Each color represents a different style of
music. If a color shines brighter in a segment of the rainbow
then this indicates that the respective style of music can be
found there. Furthermore, we apply audio summarization
techniques so that the users can quickly get an overview of
each artist.

As input device we use a Griffin Powermate knob (see
Figure 1). Alternatively, similar interfaces (such as the wheel
used for iPods) could be used. The user interacts with the
visualization by rotating the rainbow (by turning the knob)
and selecting an artist to listen to (by pushing the knob).

2. Related Work
In [1] an approach was presented with the same objectives
and using similar techniques to describe artists and groups
of artists with words. In contrast to this paper, the artists
were organized using a hierarchical tree structure, and nei-
ther audio-based analysis nor visualizations were used.

In [2] a similar approach was used to map music to a cir-
cle and a wheel was proposed as input device. One of the
differences is that we do not aim at playlist generation. In
particular, instead of mapping tracks individually, we group
them by artists. Furthermore, we use a new visualization
metaphor, describe artists using words and audio thumb-
nails, and label the sections of the circle to help users find
interesting sections more easily.



Figure 1. The MusicRainbow interface. The input device (Griffin Powermate knob) is shown in the upper left. On the right
side is a screenshot where Outkast is selected. The picture in the lower left shows how the colors and labels change when the
rainbow (shown on the right) is rotated counter-clockwise by 17 degrees.

Overall, there are a number of related approaches. Re-
lated user interfaces include, for example, the work pre-
sented in [7] which helps users discover and enjoy music
using audio-based similarity. Approaches with a stronger
focus on visualizations (e.g. using maps to display the con-
tents of a collection) include, for example, the work pre-
sented in [3–5]. Approaches without a particular focus on
visualization include, for example, work using user profiles
and information on the web to make recommendations [6].
Furthermore, related work includes automatic playlist gen-
eration (e.g. [8–12]).

3. User Interface
Figure 1 shows the MusicRainbow interface. Inside the cir-
cular rainbow are high-level genre terms which describe the
different sections (e.g. Rap, Jazz, Soul). More specific
terms (e.g. Female, Guitar, Beats) are located outside. Each
ring of the rainbow (and thus color) corresponds to one high-
level term. In sections where the terms are frequently used
to describe the artists, the colors are brighter. For example,
in the screenshot one of the yellow-green colors corresponds
to Rap and red corresponds to Rock. (However, this infor-
mation is not given explicitly to the user.)

By turning the knob, the user rotates the rainbow (and la-
bels). There is no linear mapping between positions on the
knob and the rainbow. If the knob is turned faster, the rota-
tion step size is larger, allowing the user to quickly reach a
different region on the rainbow. If the knob is turned slowly,
the step size is small allowing the user to move between ad-
jacent artists on the rainbow.

In the center of the right side is the name of the currently

selected artist. In the screenshot (Figure 1, right side), Out-
kast is selected. Artists in the neighborhood include, for
example, Eminem, Jay-Z, Busta Rhymes, and Warren G. At
the bottom right, the selected artist is described with some
words. For Outkast the following (automatically generated)
description is displayed: “rap, singing, southern, duo, beats”.
(Note that Outkast is a duo from Atlanta.)

Furthermore, below the description, 8 color bars (corre-
sponding to the colors of the rainbow) are displayed. These
color bars help the user understand which colors correspond
to which type of music. For example, for Outkast the yellow-
green color has the largest bar. This indicates that other seg-
ments of the rainbow where this color is highlighted contain
similar artists. (In contrast to the rainbow colors, which are
smoothed across segments, these color bars are not smoothed.
They only describe the respective artists, and thus do not
necessarily correspond to the colors of the current segment.)

The labels assigned to the sections of the rainbow are
misleading in some cases. For example, a section labeled
“Female” can include a large number of male artists. To
avoid user frustration, we have implemented two strategies.
First, the labels float alongside the rainbow making it less
obvious to which segments they apply exactly. Second, the
relevant labels for the currently selected artist are always
highlighted. This is intended to help the user understand that
the labels which are closest to an artist do not necessarily
apply. In the case of Outkast, the labels “Rap” and “Beats”
are highlighted.

By pushing the knob, a song from the currently selected
artist is played. If the user pushes the button again, the next
song is played. From each song, only a segment of about 20



seconds length is played. To identify the segments that sum-
marize the song as well as possible, we use a chorus-section
detection method (RefraiD [13]). The song continues un-
til the section is over or the user selects a different artist (by
turning the knob and pushing it). Pressing the knob for more
than 2 seconds stops the music.

All inputs from the user can be given using, for exam-
ple, a Griffin Powermate knob. There are basically 3 input
actions. (1) By turning the knob quickly the user can jump
to different regions on the rainbow. (2) By turning the knob
slowly the user stays in the same region and can explore
similar artists. (3) By pushing the knob the user can select
an artist to listen to. The currently playing song is displayed
in the upper right. By turning the knob during playback, the
user can read the summaries of other artists.

3.1. Implementation and Data
MusicRainbow is built with Processing (processing.org). The
computations described in the next section were run in Mat-
lab. For the experiments we used a collection of 15336
tracks from 558 artists. This collection is a subset of the
DB-XL collection described in [14].

4. Method
First, we compute the similarities for the artist and map them
to the circular rainbow. Second, we mine the web to find
words to label the rainbow. Finally, based on these words
we compute the colors of the rainbow.

4.1. Mapping Artists to the Rainbow
To compute the similarity of artists, we first compute the
similarity of tracks using the approach described in [14] as
G1C which is based low-level audio statistics. G1C is a
combination of spectral similarity and information extracted
from fluctuation patterns.

Given the similarity of tracks, we compute the similarity
of artists as follows. First, the similarities are normalized so
that for each song the sum of similarities to all other songs
equals 1. Second, let s(t, B) be the similarity of track t to the
most similar track from artist B. We then compute the sim-
ilarity s(A, B) of artists A to B as the average of all s(t, B)
over all t belonging to A. Finally, we enforce symmetry by
setting s(A, B) to the minimum of s(A, B) and s(B, A).

To evaluate the performance of this approach, we use a
genre classification scenario. The assumption is that very
similar artists belong to the same genre. We use the DB-XL
collection where each artist is assigned to one of 16 genres.
(These assignments are only used for this evaluation and not
for the interface.) We compute the classification accuracies
using leave-one-out cross-validation with a nearest neighbor
classifier. On track level, the classification accuracy is 31%
(using an artist filter so that training and test set do not con-
tain pieces from the same artist [15]). On artist level, we
obtain a significantly better value of 46%. Using web pages
(as described below) and the tf×idf similarity implementa-
tion described in [1], we obtain about 47% accuracy.

First subjective impressions confirm that the quality of
the audio-based similarity is much better at artist level than
at track level. We assume the reason for this is that comput-
ing similarities for sets of tracks instead of individual tracks
is statistically more robust.

Given the distances between artists, we map the artists to
the rainbow using a one-dimensional circular self-organizing
map [16]. Alternatively any other traveling salesman algo-
rithm could be used (see e.g. [2]).

4.2. Labeling the Rainbow
We query Google via its SOAP interface using the artist’s
name as exact phrase and “music” and “review” as con-
straints [17]. We retrieve the top 50 ranked pages per artist
and parse them using special vocabularies. For each artist
we count how often each word occurs.

We use 3 different vocabularies for labeling and sum-
marizing the artists. One for the labels inside the rainbow,
one for those outside, and one for short descriptions of the
artists. All vocabularies are subsets of the vocabulary used
in [1]. As recommended in [1], some words such as “song”
or “group” were removed. Furthermore, the vocabularies
contain lists of similar words. For example, “rap”, “hip-
hop”, “hip hop”, and “hiphop” are treated as one term.

For the labels on the inside of rainbow, we use a vo-
cabulary of over 50 high-level terms such as “rock”. For
the labels on the outside, we use terms describing various
styles of music (e.g. “synthpunk”), various instruments (e.g.
“flute”), and various words commonly associated with mu-
sic (e.g. “contemporary”). Not included are words from the
high-level vocabulary, nor words which we consider to be
generally unrelated to the acoustical characteristics of the
music (e.g. names of cities or countries). The third vocabu-
lary contains about 1400 words. It contains all words from
the other two plus additional ones such as “Berlin”.

We use filters to smooth the term frequencies on the rain-
bow and remove words that occur very frequently (for ex-
ample, “singing” describes almost half of the rainbow). As
a scoring function, we use the technique presented in [18].
In addition, we use simple heuristics to find labels which
describe larger regions of the rainbow.

4.3. Coloring the Rainbow
The colors of the rainbow encode the term frequencies of the
high-level labels used inside the rainbow. Each of the 8 rings
of the rainbow corresponds to a label. The rings are ordered
such that the ring representing the most frequent term in the
collection is on the outside (red), and the ring representing
the least frequent term is on the inside (purple). In Figure 1,
the outermost ring corresponds to “rock” which is the most
frequent high-level term in the collection. The (orange) ring
next to it corresponds to “jazz”.

The rainbow is segmented into equally large arcs (note
that this segementation is hard to see sometimes because
neighboring segments tend to have similar colors). The bright-
ness of each of the 8 colors in a segment is defined by the



scoring function used to select the high-level labels. For ex-
ample, if “rock” has a high average score in a segment then
the brightness of the red color is increased.

5. Discussion
We have not conducted a formal user study. However, the
first impressions of the interface are promising. The labels
on the inside describe the rough structure of the rainbow
well. The labels on the outside are useful but not as good as
the ones inside. A positive example in Figure 1 is the seg-
ment labeled with “female” between the segments labeled
with “beats” and “club”. The Spice Girls are located in this
segment and 9 of their 10 closest neighbors are females (in-
cluding Jennifer Lopez and Kylie Minogue). However, the
number of males in the second “female” segment between
“guitar” and “club” is much higher. In particular in the re-
gion between “female” and “club”, there are less than 50%
females.

In general, the quality of the artist summaries seems good.
For example, the Spice Girls are described with “pop, fe-
male, singing, rock, British”. Gilberto Gil is described with
“Brazilian, singing, world music, bossa nova”. Queen is
described with “rock, singing, classic, guitar, opera”. The
term “classic rock” should have been added to the vocabu-
lary to avoid overlap with “classic music”. The term “opera”
was probably selected because of their album “A night at the
opera”.

Errors in the summaries occur most frequently in cases
where the artist name is ambiguous (e.g. in the case of “Elis-
abeth”). An example for a unique artist name that resulted in
a suboptimal summary is Jamiroquai. The band is described
with “funk, soul, female, light, cowboy”. The reason why
“female” was selected is probably their song “Cosmic girl”.
(Female and Girl are treated as the same term.) The term
“cowboy” should be removed from the vocabulary. The rea-
son why it has been selected is probably their album “The
return of the space cowboy”.

The impressions of using the Griffin Powermate knob as
input device are good. Turning the rainbow appears to be
an intuitive way to navigate in the collection. However, a
force feedback system that would give the user additional
information when the selection has been changed from one
artist to the next would make the interface even more enjoy-
able. Alternatively, we have been experimenting with a soft
clicking sound to inform the user when the selection was
changed (and by how much it has changed).

6. Conclusions
In this paper we presented MusicRainbow, a new interface
to explore music collections at the artist level. The colors
of the rainbow encode different styles of music. Similar
artists are located close to each other on the rainbow. We
presented a new approach to compute artist similarities us-
ing track level information, and a new approach to combine
audio-based similarity and information extracted from web

pages (using different vocabularies for different hierarchical
levels). We believe MusicRainbow can help users make in-
teresting discoveries amidst the rapidly growing number of
artists on the market. Future work will include a user study.

Acknowledgments
This research was supported by CrestMuse, CREST, JST.

References

[1] E. Pampalk, A. Flexer, and G. Widmer, “Hierarchical Orga-
nization and Description of Music Collections at the Artist
Level,” in ECDL, 2005.

[2] T. Pohle, E. Pampalk, and G. Widmer, “Generating
Similarity-Based Playlists Using Traveling Salesman Algo-
rithms,” in DAFx, 2005.

[3] E. Pampalk, A. Rauber, and D. Merkl, “Content-Based Or-
ganization and Visualization of Music Archives,” in ACM
Multimedia, 2002.

[4] R. van Gulik, F. Vignoli, and H. van de Wetering, “Mapping
Music In The Palm Of Your Hand, Explore And Discover
Your Collection,” in ISMIR, 2004.

[5] M. Schedl, P. Knees, and G. Widmer, “Discovering and Vi-
sualizing Prototypical Artists by Web-Based Co-Occurrence
Analysis,” in ISMIR, 2005.

[6] O. Celma, M. Ramı́rez, and P. Herrera, “Foafing the music: A
music recommendation system based on RSS feeds and user
preferences,” in ISMIR, 2005.

[7] M. Goto and T. Goto, “Musicream: New Music Playback In-
terface for Streaming, Sticking, Sorting, and Recalling Musi-
cal Pieces,” in ISMIR, 2005.

[8] B. Logan, “Content-Based Playlist Generation: Exploratory
Experiments,” in ISMIR, 2002.

[9] J.-J. Aucouturier and F. Pachet, “Music Similarity Measures:
What’s the Use?” in ISMIR, 2002.

[10] E. Pampalk, T. Pohle, and G. Widmer, “Dynamic Playlist
Generation Based on Skipping Behaviour,” in ISMIR, 2005.

[11] F. Vignoli and S. Pauws, “A Music Retrieval System Based
on User-Driven Similarity and its Evaluation,” in ISMIR,
2005.

[12] M. Mandel, G. Poliner, and D. Ellis, “Support Vector Ma-
chine Active Learning for Music Retrieval,” Multimedia Sys-
tems, Springer, 2006.

[13] M. Goto, “A Chorus-Section Detecting Method for Musical
Audio Signals,” in ICASSP, 2003.

[14] E. Pampalk, “Computational Models of Music Similarity and
their Application in Music Information Retrieval,” Doctoral
dissertation, Vienna University of Technology, 2006.

[15] E. Pampalk, A. Flexer, and G. Widmer, “Improvements of
Audio-Based Music Similarity and Genre Classification,” in
ISMIR, 2005.

[16] T. Kohonen, Self-Organizing Maps, Springer, 2001.
[17] B. Whitman and S. Lawrence, “Inferring Descriptions and

Similarity for Music from Community Metadata,” in ICMC,
2002.

[18] K. Lagus and S. Kaski, “Keyword Selection Method for
Characterizing Text Document Maps,” in ICANN, 1999.


