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Abstract
We propose aquery-by-textsystem for modeling a het-

erogeneous data set of music and words. We quantitatively
show that our system can bothannotatea novel song with
semantically meaningful words andretrieve relevant unla-
beled songs from a database given a text-based query. We
explain two feature extraction methods useful for summa-
rizing the audio content of a song. We describe a supervised
multi-class naı̈ve Bayes model and compare two parameter
estimation techniques. Our approach is influenced by recent
computer vision research on the related tasks of image an-
notation and retrieval.

Keywords: music annotation, music retrieval, query-by-text,
heterogeneous data

1. Music Annotation and Retrieval
Music is a form of communication that can represent human
emotions, personal style, geographic origins, spiritual foun-
dations, social conditions, and other aspects of humanity.
Listeners naturally use words in an attempt describe what
they hear, though two listeners may use drastically different
words when describing the same piece of music. However,
words related to some aspects of the audio content, such as
instrumentation and genre, may be agreed upon by a major-
ity of listeners. This agreement suggests that it is possible
to create a computer audition system that can learn the rela-
tionship between audio content and words. By jointly mod-
eling these two representations, we create a model that can
be used to bothretrievesounds given a text-based query and
to annotatea sound with text given the audio content.

A central goal of the music information retrieval com-
munity is to create systems that efficiently store and retrieve
songs from large databases of musical content [1]. The
most common way to store and retrieve music uses metadata
such as the name of the composer or artist, the name of the
song or the release date of the album. We consider a more
general definition of musical metadata as any non-acoustic
representation of a song. This includes genre and instru-
ment labels, song reviews, ratings according bipolar adjec-
tives (e.g., happy/sad), and purchase sales records. These
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representations can be used as input to collaborative filter-
ing systems that help users search for music. The drawback
of all these systems is that they require a novel song to be
manuallyannotated before it can be retrieved.

Another approach, calledquery-by-similarity, takes an
audio-based query and measures the similarity between the
query and all of the songs in a database [1]. One draw-
back of query-by-similarity is that it requires a user to have
a useful audio exemplar in order to specify a query. For
cases in which no such exemplar is available, researchers
have developedquery-by-humming[2], -beatboxing[3], and
-tapping[4]. However, it can be hard, especially for an un-
trained user, to emulate the tempo, pitch, melody, and tim-
bre well enough to make these systems viable [2]. A nat-
ural alternative is to describe music using words. A good
deal of research has focused on content-based classifica-
tion of music by genre [5], emotion [6], and instrumentation
[7]. These classification systems effectively ‘annotate’ mu-
sic with class labels (e.g., ‘blues’, ‘sad’, ‘guitar’). Theas-
sumption of a predefined taxonomy and the explicit labeling
of songs into classes can give rise to a number of problems
[8] due to the fact that music is inherently subjective.

We propose a content-basedquery-by-textmusic retrieval
system that learns a relationship between acoustic features
and words using a heterogeneous data set of songs and song
reviews. Our goal is to create a more general system that
directly models the relationship between audio content and
a vocabulary that is less constrained than existing content-
based classification systems. The query-by-text paradigm
has been largely influenced by work on the similar task of
image annotation. We specifically adapt asupervised multi-
class näıve Bayes[9] model since it has performed well on
the task of image annotation. This approach views semantic
annotation as oneM -class problem rather thanM binary
one-vs-all problems whereM is the number of words in
a predefined vocabulary. A comparative summary of alter-
native supervised one-vs-all [10] and unsupervised [11, 12]
models for image annotation is presented in [9].

Despite interest within the computer vision community,
there has been relatively little work on developing ’query-
by-text’ for audio (and specifically music) data. One excep-
tion is the work of Whitman [13, 14, 15]. Our approach
differs from his in number of ways. First, he uses a set
of web-documents associated with an artist whereas we use
song reviews created by experts. Second, he takes a one-vs-
all approach and learns a discriminative classifier (a support
vector machine or a regularized least-squares classifier) for



each term in the vocabulary. We use a generative multi-class
approach by estimating a probability distribution over a fea-
ture space for each term in our vocabulary. An advantage
of our approach is that, for annotation, our model outputs a
natural ranking of words [9]. Other query-by-text audition
systems [16, 17] have been developed for annotation and re-
trieval of sound effects.

2. Feature Extraction
In order to model the relationship between songs and words,
each song is represented by both the words extracted from
the text review and the audio features extracted from the
acoustic waveform.

2.1. Text Feature Extraction
A song review often contains semantic information about
the audio content (e.g., genre, instrumentation, emotion,style,
rhythm) of a song. While much of this information can only
be extracted though sentence- or document-level compre-
hension, modeling these high-level aspects of prose requires
a complex language model. Instead, we focus on word-level
comprehension using thebag-of-wordsrepresentation. We
reduce a song review to the set of wordsW that are found in
both the review and our musical vocabularyV . An example
of a song review and the associated bag-of-words represen-
tation can be found in the first two columns of Table 1.

Our musical vocabulary consists of 317 musically infor-
mative words that the authors have hand picked from the list
of the 1200 most common words found in a corpus of song
reviews. “Musically informative” means that the word
may describe something about the audio content, as opposed
to words whose meaning is historical, cultural, syntactical
etc. We do not include common stop words (‘the’, ‘into’,
‘a’), vague words (‘meaningful’, ‘across’), or general words
(‘song’, ‘genre’). In addition, we preprocess the text witha
custom stemming algorithm that alters suffixes so that some
words, such as ‘guitar’ and ‘guitars’, are considered identi-
cal, while others, such as ‘blue’ and ‘blues’, remain distinct.

2.2. Audio Feature Extraction
Our musical data set consists of MP3 audio files which we
convert to single channel audio data with a sampling rate of
22,050Hz. We examine two feature extraction techniques
that have been useful for classifying music by genre [5].

2.2.1. Dynamic Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) describe the
spectral shape of a short-time audio frame in a concise and
perceptually meaningful way and are popular features for
speech recognition and music classification (e.g., [18, 19,
16]). We calculate 13 MFCC coefficients for each short-
time frame of 512 samples (23ms) of audio.

In an attempt to capture musically-relevant details about
changes between frames (e.g., beat onsets, rhythmic pulse,
pitch transitions), we collect a series of MFCC vectors and
use them to calculatedynamicMFCC (dMFCC) features

Figure 1. dMFCC feature extraction schematic

(see Figure 1). We consider atexture windowof 16640
samples (755ms) comprised of 64 half-overlapping short-
time frames. For each of the 13 MFCCs, we take a dis-
crete Fourier transform (DFT) over the texture window of
64 points, normalize by the DC value (to remove the effect
of volume) and summarize the resulting spectrum by inte-
grating across 4 bins: (unnormalized) DC, 1-2Hz, 3-15Hz
and 20-43Hz. The resulting 52 features (4 features for each
of the 13 MFCCs) describe a texture window. We further
reduce the dimensionality by performing Principal Com-
ponents Analysis (PCA) [20] in the 52-dimensional vector
space to find a projection into a 12-dimensional subspace.
These 12 principal components account for 99% of the train-
ing data variance.

2.2.2. Auditory Filter-bank Temporal Envelope
The auditory filter-bank temporal envelope (AFTE) features
extract information about the temporal and spectral char-
acteristics of music (see Figure 2) [5]. In our implemen-
tation, 743ms analysis windows of a sound waveform are
passed through a biologically-inspired 18 channel gamma-
tone filter-bank [21]. We examine the positive tempo-
ral envelope of these gammatone filter responses by recti-
fying (squaring) each time series. We retain only the low-
frequency, slowly-modulating envelope by taking the abso-
lute value of the DFT of the rectified, Hamming-windowed
signal and ignoring all of spectral components above 1kHz.
To summarize the spectrum of this temporal envelope in a
concise form that still retains much of its analytical capac-
ity, we look at the data in 4 chunks of the spectrum; DC,
3-15Hz, 20-150Hz and 150-100Hz. With 18 gammatone
filters, this results in a total of 72 features describing each
743ms analysis window. Again we use PCA for dimension-
ality reduction and represent each feature vector with 12 co-
efficients. This projection accounts for 95% of the variance
in the training set.

3. Modeling Music and Words
Consider a vocabularyV consisting ofM unique words.
Each wordwi ∈ V may be a unigram, such as ‘happy’ or
‘blues’, or a bigram, such as ‘electric;guitar’ or ‘bob;dylan’.
The goal in annotation is to find a setW = {w1, ..., wA}
of A semantically meaningful words that describe a query
songsq. Retrieval involves rank ordering a set ofR songs



Figure 2. AFTE feature extraction schematic

S = {s1, ..., sR} given a queryWq. It will be convenient
to represent each annotationW as a binary vectory =
{y1, ..., yM} whereyi = 1 if wi ∈ W , and0 otherwise.
We represent a songs as a setX = {x1, ...,xT} of T real-
valued feature vectors where each vector,xt, is extracted
from a short segment (e.g., 3/4 seconds) of the audio content
andT depends on the length of the song. Our data setD will
then be represented as a set{(X1,y1), ..., (XD,yD)}.

Annotation can be thought of as a multi-class classifica-
tion problem in which each wordwi ∈ V represents a class.
Our approach involves modeling a class-conditional distri-
butionP (x|i), i ∈ {1, ..., M} for each wordwi ∈ V . Given
a query song represented byX = {x1, ...,xT}, the Bayes
decision rule for selecting the individual word with the min-
imum probability of error is given by:

i∗ = arg max
i

P (i|Xq) = argmax
i

P (Xq|i)P (i)

P (Xq)
,

whereP (i) is the prior probability that wordwi will appear
in an annotation. If we assume thatxa andxb (∀a, b ≤
T, a 6= b) are conditionally independent given wordwi, then

i∗ = argmax
i

[

T∏

t=1

P (xt|i)] · P (i). (1)

We assume a uniform prior (P (i) = 1/M for i = 1, .., M )
since theT factors in the product dominate the word prior.
Taking logarithms results in our finalannotationequation:

i∗ = arg max
i

T∑

t=1

log P (xt|i), (2)

While the naı̈ve Bayes assumption introduced in (1) is un-
realistic, modeling the interaction between feature vectors
may be infeasible due to computational complexity and data
sparsity. Computing (2) for each word creates an ordering
for all words in the vocabulary. To annotate a song, we se-
lect theA words that individually maximize this equation.

For retrieval, we want to rank all songs in a test set based
on their conditional probability given a single-word query
wq. We find empirically that using the posteriorP (X|q)
always returns the same ranking under every trained word
model since some songs are much more likely than others.
The first reason for this is that longer songs (with more fea-
ture vectors) have lower log likelihoods resulting from the

sum of additional log probability terms. It has been argued
that the underestimation of the log likelihood is due to the
poor conditional independence assumption in (1) between
the audio feature vectors [22]. The standard solution is to
calculate theaveragelog posterior for each track (whereT
is proportional to the length of the song):

X ∗ = argmax
X

1

T

T∑

t=1

log P (xt|q). (3)

The second, more subtle source of bias is that the class
conditional density functionsP (x|q) for most feature vec-
tors take on values very similar to the song prior density
functionP (x). This creates asong biaswhere songs that
have high likelihood under the prior distribution will have
high likelihood under most of the class conditional distribu-
tions. We normalize for this song bias,P (X ), and use the
likelihoodP (q|X ) instead of the posterior forretrieval:

X ∗ = arg max
X

P (q|X )

= arg max
X

P (X|q)P (q)

P (X )

= arg max
X

[
∏T

t=1 P (xt|q)] · P (q)
∑M

i=1[
∏T

t=1 P (xt|i)] · P (i)

= arg max
X

∑T
t=1 log P (xt|q)∑M

i=1

∑T

t=1 log P (xt|i)
. (4)

Again, we assume a uniform word prior and take logarithms
for computational simplicity. Normalizing with the song
bias effectively allows each song to place more weight on
the words that have highestrelativeposterior. We rank songs
by the weight that each song in the database places on the
query word. Note that the factor1/T introduced in (3) to
account for the song length cancels out in (4).

4. Parameter Estimation
For each wordwi, we learn the parameters of the class con-
ditional density,P (x|i) using audio features from all songs
which havewi in their associated annotations. The training
setTi for wordwi consists of only thepositiveexamples:

Ti = {Xd : [yd]i = 1} (5)

Note that the alternative supervised one-vs-all framework
learns a classifier for each word in the vocabulary using
both the positive andnegativeexamples, explicitly creating
a negative-class model [9]. This approach is problematic
when using a data set that isweakly labeled: the absence of
a word from the annotation does not necessarily mean that
the song could not be correctly labeled with that word. In
this case, the negative-class model can not be learned from
data points that could have been positively labeled. Our
multi-class framework focuses on learning the positive-class
model using only data that is known to be positively labeled.



Figure 3. (a) Direct and (b) Naive Averaging parameter estima-
tion. Arrows indicate that parameters are learned using EM.

We learn a set ofM word-levelconditional distributions
P (x|i) for i = 1, ..., M , where each distribution is aC-
component mixture of Gaussians distribution parameterized
by {πc, µc, Σc} for c = 1, ..., C. The word-level distribu-
tion for wordwi is given by:

P (x|i) =
C∑

c=1

πcN (x|µc, Σc)

whereN (·, µ, Σ) is a multivariate Gaussian distribution with
meanµ and covariance matrixΣ. We consider only diago-
nal covariance matrices since using full covariance matrices
can cause models to overfit the training data while scalar
covariances do not provide adequate generalization.

We consider two parameter estimation techniques: di-
rect estimation and naive averaging [9]. Both techniques
are similar in that, for each wordwi ∈ V , they use the
Expectation-Maximization (EM) algorithm for fitting a mix-
ture of Gaussians [20] distribution to the training data setTi

described in (5). They differ in how they break down the
parameter estimation problem into subproblems and merge
these results to produce a final density estimate.

4.1. Direct Estimation
Direct estimation trains a model for each wordwi using the
superset of feature vectors for all the songs that have word
wi in the associated human annotation:

⋃
Xd ∀d such that

Xd ∈ Ti. Using this training set, we directly learn the word-
level mixture of Gaussian distribution using the EM algo-
rithm (Figure 3a).

The drawback of using this method is that computational
complexity increases with training set size. For example, if
Ti contains 200 songs and there are on average T = 600 fea-
ture vectors per song, we must train each word-level model
using 120,000 feature vectors. To learn a mixture of Gaus-
sians distribution (withC = 32 Gaussian components), it
can take many hours to train a single word-level model. A
more serious deficiency of this estimation method is that the
EM algorithm can converge to a bad local optimum since
the set of 120,000 feature vectors can contain any and all of
the outliers that exist for that word class.

4.2. Naive Averaging
Instead of directly estimating a word-level distribution for
wi, we can first learnsong-leveldistributions: P (x|i, j),

j ∈ 1, ..., |Ti| where the variablej indicates a song. We
use EM to train a song-level distribution from the feature
vectors extracted from that song. We then create a word-
level distribution by averaging the song-level distributions
of each song reviewed withwi. Naive averaginggives equal
weight to each song-level distribution, which results in the
following distribution:

P (x|i) =
1

|Ti|

|Ti|∑

j=1

K∑

k=1

π
(j)
k N (x|µ

(j)
k , Σ

(j)
k )

whereK is the number of song-level mixture components
(Figure 3b).

Training a model for each song in the training set and
summing them is relatively efficient but the drawback of this
estimation technique is that the size of word-level models
grows with the size of the training database since there are
|Ti|·K components. Using the example above, ifTi contains
200 songs and we model each song-level distribution with
K = 8 components then to evaluate the word-level model
for a feature vectorx, we need to evaluate the probability of
x under 1,600 multivariate Gaussian distributions.

5. Experimental Setup and Results
In this section, we quantitatively demonstrate that our sys-
tem can both annotate songs with a number of relevant words
and retrieve songs from database given a text query. We
adopt similar evaluation methods to those used for image
annotation [9, 12]. It should be noted that it is difficult for
us to directly compare our results with Whitman’s related
work [13] since much of his research focuses on evaluation
of vocabulary selection rather than retrieval performance.

We collect a set of 2,131 songs in MP3 format from our
personal collections and their associated song reviews. Re-
views are natural language documents describing individual
songs created by human experts at AMG Allmusic [23] (see
Table 1). Reviews are parsed, stemmed and converted to
binary document vectors. Each review contains, on aver-
age, 19 of the 317 words in our vocabulary. For each 2 to
12 minute song, we extract one dMFCC and AFTE feature
vector from half-overlapping 3/4 second windows. After ap-
plying PCA, the resulting representation is a bag of between
320 and 1920 12-dimensional feature vectors.

We randomly partition our data of song-review pairs into
a training set (80%) and a test set (20%). The training set
is used for learning the PCA projection matrix and the pa-
rameters for our each of ourM word-level distributions.
The test set is used for model evaluation. We consider two
parameter estimation methods (direct withC = 32, naive
averaging withK = 8) and two audio feature extraction
techniques (dMFCC, AFTE) for a total of four models. We
compare these models against three random baselines: ran-
dom sample, prior stochastic, and prior deterministic. For
each song,random samplepicks words at random (with-
out replacement) from our vocabulary to annotate a song.



Table 1. Original review plus the bag of words, direct model and random baseline annotations for the Monkees’ “I’m a Believer”.
Human Review Bag of Words Model Annotation Random Stochastic Prior Deterministic Prior

The best of the ’60sgood-time pop songsand one of the mostinfec-
tioussingles ever recorded, “I’m a Believer” by theMonkeesgrooves
along with a ragged accompaniment featuring handclaps and tam-
bourine, fabelectric piano solos, and a few well-timed, rushing-up-
to-the-brink pauses just before the contagious, ferventchorus. For a
song so incrediblycatchy, it’s hardly surprising thatsongwriterNeil
Diamond (before his transformation into asexbomb for middle-aged
females across the nation) and producer Jeff Barry were responsible;
they were two of the most talented hires on the assembly line at the
pop-songfactory known as the Brill Building, responsible for dozens
of hitsduring the ’60s. “I’m a Believer” itself ranks as the third most
popular rocksong of the ’60s, behind only theBeatles’“Hey Jude”
and “I Want to Hold Your Hand.” It spent seven weeks at number one
in America, hit thetop of the charts in Britain as well, and charted in
over a dozen countries...

american monkees lyric debut;album lyric
beatles bouncy soundtrack bass guitar
catchy beatles perfect catchy band
chorus witty subtle vocal vocal
complex call;response electronic instrumental rock
electric descending led;zeppelin late pop
good john;lennon tone studio hit
high pop;song contemporary love love
hit beat roots blues melody
infectious british emotion chorus chorus
love
monkees
motown
piano
...

Prior-stochasticsamples words (without replacement) from
a multinomial distribution parameterized by the word prior
distribution,P (i) for i = 1, ..., 317, that are estimated us-
ing the word counts observed in the training set.Prior-
deterministicranks words according to the word priorsP (i)
thus always selecting the same words for every annotation.

5.1. Annotation
Using each model, we annotate all test set songs with the
10 most likely words using (2). Annotation performance is
measured using meanper-word precision and recall. For
each wordw, |wH | is the number of songs that havew in
the “human” song review.|wA| is the number of songs the
model “automatically” annotates withw. |wC | is the num-
ber of “correct” words used in both the song reviews and by
the model. Per-word recall is|wC |/|wH | and per-word pre-
cision is|wC |/|wA|. Mean per-word recall/precision is the
average of these ratios over all 317 words in our vocabulary.

Since precision is undefined for words that the model
never uses, we actually computesmoothedprecision by plac-
ing a small non-negative weightε/307 on each word that the
model did not use to annotate a test song (ε = 10−4). The
weight of a word that is used by the model is corrected to
1−(ε/10) so that the total weight distributed across any one
test song is 10. The smoothed estimate for words that are
not used by a model is approximately the word prior,P (i).
Without smoothing and defining precision≡ 0 for words
where |wA| = 0, the precision of the deterministic prior
(which always chooses the same 10 words) is reduced from
0.060 to 0.010 while mean precisions for all other models
remain roughly unaffected.

Quantitative annotation results for the four models and
three random baselines are in Table 3. Models using dM-
FCC features perform best and significantly beat the random
baselines by 3 times in mean recall and 2 times in mean pre-
cision. Table 1 shows example annotations created by one
model (dMFCCs, direct estimation) and random baselines.

5.2. Retrieval
For each wordwq, we rank the test songs inS according
to (4) and calculate the mean average precision (mAP) [12]
and the mean area under the receiver operating characteris-
tic (ROC) curve (mAROC). Average precision is found by
moving down our ranked list of test songs and averaging the

precisions at every point where we correctly identify a new
song. The ROC curve plots true positive rate as a function
of the false positive rate as we move down our ranked list
of songs. The area under the ROC is found by integrating
the ROC curve. (Random guessing produces an area of 0.5
as shown empirically in Table 3). Columns 4 and 5 of Table
3 show mAP and mAROC found by averaging each metric
over all the words in our vocabulary.

Similar to the annotation results, we see that our best
models (direct and naive averaging with dMFCC) perform
significantly better than random in both mAP and mAROC.
Also, we see that models trained using dMFCC features out-
perform those that use AFTE features. Qualitative retrieval
results for one song are shown in Table 2.

6. Discussion
While our models significantly outperform the random base-
lines, our best annotation results (recall = 0.09, precision =
0.12) leave much room for improvement. State-of-the-art
content-based image annotation systems report mean per-
word recall and precision scores of about 0.25 [9]. How-
ever, the relative objectivity of the tasks in the two domains
as well as the vocabulary, the quality of annotations, the
features, and the amount of data differ greatly between our
music annotation system and existing image annotation sys-
tems making any direct comparisons somewhat misleading.

It should be noted that our “ground truth” human re-
views representnoisyversions of ideal annotations. A music
reviewer creating a document to describe a song does not
make explicit decisions about whether specific words that
we include in our vocabulary are relevant or not. Thus, rele-
vant words are often omitted (weak labeling) and erroneous
words can be included by our representation of the reviews
(e.g., “this song does not rock”). We expect to improve per-
formance in future work by replacing natural language song
reviews withcleanannotations from a manually labeled a
data set. We also expect performance to improve with bet-
ter, automatic vocabulary selection as in [14].

Our system has explicitly been designed to be modular
so that we can incorporate new training data, test different
feature extraction techniques and use alternative heteroge-
neous data models. Numerous short and medium-time fea-
ture extraction techniques have been proposed my the MIR



Table 2. Test set songs retrieved by our model using the query
word “punk;rock” and songs in which “punk;rock” appears in
the associated song review.

Automatically Retrieved Manually Reviewed
smashing pumpkins-cherub rock clash-the guns of brixton
ramones-pinhead r.e.m.-radio free europe
guns n roses-you could be mine ramones-cretin hop
neutral milk hotel-holland 1945 replacements-answering machine
built to spill-you were right stooges-t.v. eye
replacements-answering machine television-see no evil
cheap trick-dream police
oasis-supersonic
germs-manimal
weezer-buddy holly

Table 3. Annotation and retrieval results. All models perform
significantly better than the ‘random sample’ baseline in a one-
sided, paired t-test (α = 0.01). Recall = mean per-word recall,
Prec = mean per-word smoothed precision, mAP = mean aver-
age precision, mAROC = mean area under the ROC curve.

Model Annotation Retrieval
Recall Prec mAP mAROC

Random Baselines
Random Sample 0.030 0.060 0.071 0.49
Prior (Stochastic) 0.032 0.060 0.072 0.50
Prior (Deterministic) 0.032 0.060 0.068 0.50

dMFCC Features
Direct 0.087 0.108 0.105 0.60
Naive Averaging 0.072 0.119 0.109 0.61

AFTE Features
Direct 0.067 0.089 0.092 0.58
Naive Averaging 0.055 0.110 0.097 0.59

community, such as those based on psychoacoustic models
[5] and autoregression [24]. We plan to explore these exist-
ing techniques as well as to design novel methods specific to
the “query-by-text” annotation/retrieval tasks. We are also
interested in a music model that takes account of the tem-
poral relationships between features (e.g., a hidden Markov
model [25]) as an alternative to our “bag-of-feature-vectors”
representation. We plan to implement alternative parameter
estimation techniques, such as Mixture Hierarchies EM [9],
and experiment with unsupervised models [11, 12].

One topic not addressed by this paper is retrieval with
multi-word queries. We can imagine one approach that com-
bines rankings output from individual word models or an-
other approach that merges word-level distributions (e.g.,
using naive averaging) to create a “query-level” distribution.
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