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Abstract
We studied the problem of automatic music transcription
(AMT) for polyphonic music. AMT is an important task
for music information retrieval because AMT results enable
retrieving musical pieces, high-level annotation, demixing,
etc. We attempted to transcribe a part played by an instru-
ment specified by users (specified part tracking). Only two
timbre models are required in the specified part tracking
to identify the specified musical instrument even when the
number of instruments increases. This transcription is for-
mulated into a time-series classification problem with mul-
tiple features. We furthermore attempted to automatically
estimate weights of the features, because the importance
of these features varies for each musical signal. We esti-
mated quasi-optimal weights of the features using a genetic
algorithm for each musical signal. We tested our AMT sys-
tem using trio stereo musical signals. Accuracies with our
feature weighting method were 69.8% on average, whereas
those without feature weighting were 66.0%.

Keywords: automatic music transcription, specified part track-
ing, feature weighting, genetic algorithm

1. Introduction
Recently, because of the growth of the digital music indus-
try, demand for music information retrieval (MIR) and man-
agement of musical data has been increasing. Automatic
music transcription (AMT) is needed to improve MIR be-
cause musical scores enable MIR by melody or musical in-
strument, etc. AMT for polyphonic music generally con-
sists of two successive processes: note formation, which es-
timates the onset time and pitch of each note, and stream
formation, which classifies the formed notes by their in-
struments (parts). The latter problem has not been studied
enough, which made the AMT incomplete. Therefore, a
method to form streams is strongly required to realize an
AMT for polyphonic music.

Previous studies of stream formation were classified broadly
into two approaches. One identifies the musical instruments
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Figure 1. Overview of Specified Part Tracking

of all parts and labels all the instruments given [1, 2, 3]. In
this approach, training data for all instruments which could
be contained in musical pieces is required to separate all in-
struments exactly. Another forms streams without informa-
tion about musical instruments contained in musical pieces.
This approach does not require training data [4]. However,
users cannot extract streams they wanted because the ob-
tained streams have no label of the target instrument.

We developed a new approach in which the AMT system
is given one of the musical instruments included in the mu-
sical pieces and transcribes that part of the musical pieces.
By focusing on only one musical instrument a user specified,
we require only two timbre models to identify the specified
musical instrument. Specified part tracking is the stream
formation based on our approach.

We also developed a method for automatically estimat-
ing weights of features which are used in the specified part
tracking. The importance of these features depends on musi-
cal signals. For example, directional reliability by alignment
of instruments, distortion of timbre features by noises. We
develop a method for estimating quasi-optimal weights for
each musical signal using a genetic algorithm.

2. Problem Specification

Specified part tracking classifies musical notes into the set
of notes of a specified instrument N and that of other in-
struments N̄ . We defined a pair of them H = (N, N̄) as a
hypothesis of the specified part tracking. The specified part
tracking is performed as follows:



1. Generate two initial hypotheses ({n1}, φ), (φ, {n1})
for the first note n1.

2. Expand each hypothesisH = (N, N̄) on notes n1 · · ·nk

into two new hypotheses H0 = (N ∪{nk+1}, N̄) and
H1 = (N, N̄ ∪ {nk+1}), and calculate the reliability
(corresponding likelihood) of each hypothesis.

3. If the number of hypotheses exceeds a constant K ,
delete all hypotheses except those reliabilities are in
the top K .

4. Iterate 2 and 3 for all notes.

5. After expanding hypotheses and calculating their reli-
ability through a note list, output a hypothesis which
has the maximum reliability as the result of the spec-
ified part tracking.

3. Implementation
We implemented the specified part tracking with four fea-
tures. The features were classified into two: we used “Tim-
bre Similarities to the Model” to evaluate the similarity be-
tween note n and the specified instrument; “Timbre Simi-
larities to the Specified Part,” “Proximity of Localization,”
and “Pitch Transition Frequency” to evaluate the similarity
between n and the specified part. The latter features were
designed based on Sakuraba et al. [4].

Timbre Similarity to the Model (fI ) This feature represents
the timbre similarity between a note n and the spec-
ified instrument. The timbre of note n is described
by vector x(n) proposed by Kitahara et al. [5]. The
distance of n to the model of the specified instrument
M represents the similarity between n and the instru-
ment, but features extracted from mixed sounds are
frequently distorted. We used global model G, which
does not depend on any musical instruments, and we
used the distance of n to M (d(n, M)) divided by the
distance n to G (d(n, G)) to evaluate the similarity.
fI(n) is described as the statistical probability calcu-
lated by an F-test:

fI(n) =
∫ ∞

dI(n)

ξm/2−1

B(m/2, m/2)(ξ + 1)m
dξ,

where dI(n) = d(n, M)/d(n, G), m = dim(x(n)),
and B(m1, m2) is the Beta function.

Timbre Similarity to the Specified Part (fS) This feature
represents the timbre similarity of a note n and the
part N . The timbre features are described as the same
as above. We used the distance n to the distribution
of the timbre features of ñ ∈ N (dS(n)) to evaluate
the similarity. fS(n) is calculated by a χ2-test:

fS(n) =
∫ ∞

dS(n)

ξm/2−1e−ξ/2

2m/2Γ(m/2)
dξ,

where Γ(m) is the Gamma function.

Localizational Proximity (fL) This feature represents the
localizational proximity of n to N . The localization
of the note is the mode value of the interaural phase
difference (IPD) of every frame. We used the distance
of n to the distribution of the localization of ñ ∈ N
(dL(n)) to evaluate the proximity. fL(n) is calculated
by a χ2-test:

fL(n) =
∫ ∞

dL(n)

1√
2π

ξ−1/2e−x/2 dξ.

Pitch Transition Frequency (fT ) This feature represents the
frequency of pitch transitions. This is the trigram
probability that n follows N . We used the model of
the pitch transition as a trigram model in which the
pitch occurrence probability depends on the pitch of
the adjacent two notes (pitch(nc−1) and pitch(nc)).
fT (n) is described as a posterior probability under N :

fT (n) = p(pitch(n)|pitch(nc−1), pitch(nc)).

We used two different timbre features fI and fS . There
is the risk that the timbre features of each musical piece and
training data and then the reliability of fI becomes lower.
Even if they are not similar, the reliability of fS keeps up
because fS compares the timbre features between the musi-
cal notes in the same musical piece.

The reliability of a hypothesis f(H) is calculated based
on multiple features as:

f(H) = fI(H) ×
⎛
⎝ ∑

i∈S,L,T

wifi(H)

⎞
⎠ ,

fi(H) =
∑
n∈N

fi(n) −
∑
n∈N̄

fi(n).

fI is not given the weight and previleged, because our aim
is tracking the part that the user specified and fI is the only
feature that evaluates the timbre similarity to the instrument
that the user specified.

4. Automatic Weighting of Multiple Features
After evaluation of hypotheses, optimal weights of features
differ depending on the recording conditions of acoustic sig-
nals, etc. Therefore, these weights must be automatically
estimated from acoustic signals. To do this, we designed a
fitness of the specified part tracking. Optimal weights can
be estimated by searching for weights that maximize this
fitness. We defined the two following conditions to estimate
the fitness of H = (N, N̄) and designed quantitative mea-
sures.

1. The number of notes derived from the specified in-
strument in N is greater than in N̄ . We designed
the difference between N and N̄ of the feature on the
similarities of timbre to the model as:

E[fI(N)] − E[fI(N̄)].



2. The majority of notes included in N are derived from
the same sound source. We designed the summation
of the ratio of within-class variance to between-class
variance as:

∑
i∈I,S,L,T

(
E[fi(N)] − E[fi(N̄)]

)2

Var[fi(N)] + Var[fi(N̄)]
.

We defined the product of these two values as the fitness of
the specified part tracking. We used a genetic algorithm to
search for quasi-optimal weights because theoretical calcu-
lation of the weights that maximize the fitness is difficult.
The procedure of automatic weight estimation is as follows:

1. Generate initial genes randomly.

2. Track a specified part with the weights of each gene.

3. Calculate the fitness of each gene from the results of
the specified part tracking.

4. Select genes by elite and roulette wheel selection.

5. Crossover between two randomly selected parents and
generate a new gene which has a weight that is the
mean of the weights of parents.

6. Mutate randomly selected genes into randomly calcu-
lated weights.

7. Output the weights of the gene with the highest fitness
when above steps repeated L times (L is a constant.)

5. Experiment

We conducted three experiments on AMT for polyphonic
music to show the effectiveness of our method:

1. We evaluated the effectiveness of automatic feature
weighting. We used a trio musical signal including
violin, flute and piano and tracked each instrument
part.

2. We evaluated the robustness of the specified part track-
ing with automatic feature weighting to errors derived
from automatic note formation. We used HTC [6] as
a baseline method of note formation.

3. We evaluated whether automatic feature weighting can
estimate appropriate weights: the estimated weights
reflect the importance of the features. We tested the
specified part tracking and automatic feature weight-
ing, to see whether the weight for proximity of local-
ization decreases according to the reliability of local-
ization. We created the musical pieces with several
reliabilities of localization by adding following devi-
ation to the localization of each note:

50 × X × (Variance Rate of Localization),

where X is a random variable derived from N (0, 1).

We evaluated the accuracy F using the F-measure, which is
defined as

P =
# of notes which are correctly tracked

# of notes the system outputs
,

R =
# of notes which are correctly tracked

# of notes which is on the score
and,

F =
2 × P × R

P + R
.

In experiment 2, correctly tracked notes mean that the notes
have correct pitch and their onset time deviation is at most
10ms. We compared three feature weightings: even weights;
weights estimated by our method; weights estimated by our
method using the accuracy as the fitness (upper limit).

5.1. Data for Experiments
The polyphonic musical signal we used was “Auld lang syne,”
played for about 1 minute, which included 242 notes. This
musical signal was generated by mixing audio data taken
from RWC-MDB-I-2001 [7] according to a standard MIDI
file (SMF) on a computer. To create the timbre model and
the global model, we used mixed sound templates [5]. We
used duo and trio musical pieces for mixed sound templates
which were generated according to the SMFs from RWC-
MDB-C-2001 (Piece Nos. 13, 16 and 17) [8]. We also used
SMFs from RWC-MDB-C-2001 (Piece Nos. 1–50) to create
the trigram model of pitch transition.

5.2. Experimental Results
The results of experiments 1 and 2 are listed in Tables 1 and
2, respectively. Using automatic feature weighting, we im-
proved the accuracies from 66.0% to 69.8% in experiment
1 on average. This shows that the introduction of weights
avoided incorrect part tracking (e.g., tracking the violin part
even though the flute part was specified). We improved the
accuracies from 44.5% to 55.3% in experiment 2 on average.
This shows the robustness of our feature weighting method
to errors derived from automatic note formation. The results
of experiment 3 are listed in Table 3. This shows that the
more a musical signal has variance of localization, the more
the weight wL decreases (i.e., appropriate weights were es-
timated according to the importance of features). The accu-
racies were also improved by feature weighting.

In experiment 1, the accuracy of the piano part decreased
from 98.3% to 93.1%. This shows our feature weighting
method cannot always estimate better weights than even weights.
However, the results also show the number of false alarms
decreased by feature weighting. This means the estimated
weights can reject the notes of other part and noises derived
from note formation.

It was notable that the accuracies of the flute part in ex-
periment 1 and 2 were reversal toward the accuracies of
the violin and piano parts. We assumed this as follows.
The timbre features of the flute notes were often distorted
in polyphonic music, because the power of the flute notes



Table 1. Results of Experiment 1
Tracking F with Weights Upper

Part Even Estimated Limit of F
Vn 85.7% 91.9% 92.5%
Fl 14.2% 24.6% 24.6%
Pf 98.3% 93.1% 99.1%

total 66.0% 69.8% 72.1%

Table 2. Results of Experiment 2
Tracking F with Weights Upper

Part Even Estimated Limit of F
Vn 30.6% 48.7% 50.0%
Fl 36.9% 40.7% 43.2%
Pf 66.0% 76.6% 77.6%

total 44.5% 55.3% 56.9%

Table 3. Results of Experiment 3
Variance Rate Estimated Weights F with Weights
of Localization wS wL wT Even Est.

0 0.40 0.55 0.05 92.6% 97.4%
1 0.59 0.20 0.21 85.7% 91.9%
2 0.28 0.12 0.60 74.4% 81.5%

at their onset time is smaller than the power of other in-
struments. However, the timbre features of the flute notes
were hardly distorted if its onset time varies slightly be-
cause the flute notes have gradual power envelope at on-
set time. The note formation detects a strong attack as the
onset time, and the onset time of flute notes was estimated
slightly late. The distortion of the timbre features of the flute
notes caused by the onset time deviation was smaller than by
mixed sounds. Therefore, the transcription was more correct
with automatic note formation.

6. Conclusion
We developed the specified part tracking and automatic fea-
ture weighting, and showed that our method can estimate
better weights than even weights in many cases. We also
confirmed the robustness to the error derived from automatic
note formation. We need to improve our feature weight-
ing to bring the estimated weights close to optimal weights,
specifically by investigating the fitness in the GA.

We did not refer to conventional methods of note for-
mation. Since accuracies of note formation were different
among the parts, the results of experiment 2 were affected
by note formation. Many studies have been done on note
formation, and we need to examine several note formation
methods. We are also planning to evaluate more complex
musical pieces (e.g., including drums and commercial CD
music).

We designed four features for the specified part track-
ing. Specifically, we used two different features about tim-
bre similarity because humans can often distinguish instru-

ment sounds by previous contents of musical pieces if they
have not listened to the instruments. In addition, we used
only two timbre models to identify musical instruments: the
model of the specified instrument and the global model. Al-
though conventional studies on musical instrument identifi-
cation have been using models of the all instruments that a
musical piece contains, our method is a new approach.

Many studies on musical instrument identification require
that all instruments are known. However, this approach has
several weak points: when the number of instruments in-
creases, new data of those instruments must be created, etc.
By contrast, the specified part tracking is scalable on the
number of instruments that the system needs to prepare the
data of instruments that users want to track. Because we did
not evaluate the number of instruments of musical pieces,
this is part of our future work.

7. Acknowledgements
This research was partially supported by the Ministry of Ed-
ucation, Culture, Sports, Science and Technology (MEXT),
Grant-in-Aid for Scientific Research and Informatics Re-
search Center for Development of Knowledge Society In-
frastructure (COE program of MEXT, Japan). This research
used the RWC Music Database (Classic, Musical Instrument
Sound) [7, 8], and we thank everyone who contributed this
database.

References

[1] K. Kashino and H. Murase, “A Sound Source Identification
System for Ensemble Music Based on Template Adaptation
and Music Stream Extraction,” Speech Communication, vol.
27, pp. 337–349, Mar. 1999.

[2] T. Kinoshita, S. Sakai and H. Tanaka, “Musical Sound
Source Identification Based on Frequency Component Adap-
tation,” Proc. IJCAI CASA Workshop, pp. 18–24, Aug. 1999.

[3] E. Vincent and X. Rodet, “Instrument Identification in Solo
and Ensamble Music Using Independent Subspace Analy-
sis,” in Proc. ISMIR, pp. 576–581, 2004.

[4] Y. Sakuraba, T. Kitahara and H. G. Okuno, “Comparing Fea-
tures for Forming Music Streams in Automatic Music Tran-
scription,” in Proc. ICASSP, vol. IV, pp. 273–276, 2004.

[5] T. Kitahara, M. Goto, K. Komatani, T. Ogata and H. G.
Okuno, “Instrument Identification in Polyphonic Music:
Feature Weighting with Mixed Sounds, Pitch-Dependent
Timbre Modeling and Use of Musical Context,” in Proc. IS-
MIR, pp. 558–563, 2005.

[6] H. Kameoka, T. Nishimoto and S. Sagayama. “Harmonic-
Temporal Structured Clustering via Deterministic Annealing
EM Algorithm for Audio Feature Extraction,” in Proc. IS-
MIR, pp. 115–122, 2005.

[7] M. Goto, H. Hashiguchi, T. Nishimura and R. Oka, “RWC
Music Database: Music Genre Database and Musical Instru-
ment Sound Database,” in Proc. ISMIR, pp. 229–230, 2002.

[8] M. Goto, H. Hashiguchi, T. Nishimura and R. Oka,
“RWC Music Database: Popular, Classical, and Jazz Music
Databases,” in Proc. ISMIR, pp. 287–288, 2002.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


